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Abstract

The paper presents a new algorithm FPPR which updates PageR-
anks of a directed network after topological changes in the graphs.
The algorithm is capable of regenerating scores on node and link addi-
tion/deletion. The changes in the expected value of random surfers are
used for updating the scores of the newly added nodes as well as the
impacted chain where the nodes/links are added or removed. The com-
plexity of the algorithm for k new node addition is O (k X dgf,)g where
d&’i,)g is the average degree of k nodes added. On the other hand for
node deletion the complexity is O(|Vs| + |Es|) where Vi and Es the
set of nodes and edges updated using Selective Breath First Update.
Extensive experiments have been performed on different synthetic and
real-world networks. The experimental result shows that the rank gen-
erated by the proposed method is highly correlated with that of the
recalculation on changes using the benchmark Power Iteration algorithm.

Keywords: Dynamic Network, Randomized Algorithm, Link Sensitivity
Index, Approximate Visit, Dynamic PageRank
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1 Introduction

Ranking search results of any web search is an important task. PageRank [21]
is one of the pioneer algorithms to rank web pages. There were only a few
pages in the initial days of the internet. So, static page ranking algorithms were
sufficient. However, as the WWW (World Wide Web) started growing, the cal-
culation of PageRank became more and more complex and computationally
challenging. With the growth of the internet, many subnetworks appeared and
PageRank provides different values to those networks. Thus PageRank is not
limited to web search only. These subnetworks may have dynamic characteris-
tics. Dynamic networks are those networks where nodes and links get added or
deleted with time. Today’s internet is full of dynamic networks. For example,
the Twitter retweet network, where the addition of nodes (retweets) hap-
pen frequently, the following/followers network in Twitter/Instagram, where
addition and deletion of nodes, links take place frequently, Twitter mentions
network changes with each Tweet post, the citation network, where research
papers get added over time etc. Calculating PageRank in such a dynamic net-
work is an important and challenging research problem. The trivial way to find
PageRank in dynamic networks is to run the static PageRank methods after
every update in the network. This is time-consuming and non-sustainable for
rapid updates in the network.

The real-time use cases like finding the top-k popular products in an online
shopping cart or finding top-k spreaders of news considering reshare network
etc., will need high-speed computation of PageRank. PageRank is also used to
get suggestions to users with other accounts to follow in Twitter [10]. PageRank
also finds applications in networks outside the internet. For example, identify
new possible drug targets in proteins [12] in biochemistry; predicting how many
pedestrians/vehicles visit the individual places or streets [13] etc.

The PageRank was initially proposed in [21]. It is the classical algorithm
for ranking web pages. Over the years, many variations of PageRank [5, 16,
17, 25, 28, 32] had been evolved. Randomized algorithms [2, 5, 25, 28, 32] for
approximating PageRanks were also introduced. These algorithms are called
Monte Carlo based algorithms. Randomized Monte Carlo algorithms provide
a reasonable estimation of PageRank. All these algorithms are designed for
static networks. There are methods in the literature to solve the problem of
dynamic PageRank [6, 8, 11, 16, 19, 31] as well. In [6, 8, 16], a subset of graph
is chosen and PageRank is computed on that subset using static methods for
any updates. In [11, 19, 31] random walk model is used, where random walk
segments are adjusted in case of updates. However, these algorithms could not
provide satisfying accuracy in terms of relative ranking of nodes or running
time for updates, especially for Big Data networks. Hence, a simple dynamic
PageRank algorithm that runs fast is critical to address the above problems.

This paper proposes a simple algorithm, namely, Fast Pessimistic dynamic
PageRank (FPPR) to approximate the PageRank on change in network topol-
ogy. Different topology changes considered are (i) adding a new node/link to
the network and (ii) deleting a node/link from the network. The present work
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is an extension of our initial results [22] where only node addition was con-
sidered. The proposed algorithm uses the expected value of random surfers to
re-calculate the score for changes in the topology. Here by the expected value
of random surfers, we mean the estimated number of visits at a node by the
random surfers, considering the network is static at that point. For example,
when a new node (or link) is added, the score is calculated by adding the esti-
mated scores contributed by in-links to that new node (or target node) and
estimating the visits by random surfers through the link chain it is being added
to. The same method is used to update existing nodes through the out-links of
the newly added node. These are the links that the random surfer may use to
visit (or go out from) that node if the static PageRank algorithm was used at
that point. FPPR uses Selective Breadth First Update (SBFU) for node dele-
tion. SBFU updates the score of nodes and links traversed during the process
with the appropriate deductions calculated by the expected values. Further
for link deletion, FPPR performs a local update adjusting the PageRank score
of the target node only. The proposed algorithm takes O(k x d&’f)g) time com-
plexity for k node or link addition. Here d(a]f))g is the average degree of the k
nodes added to the graph. Time complexity for node deletion and link dele-
tion is O(V; 4+ E5) and O(1) respectively. V5 is the updated set of nodes, and
E; is the set of edges associated with V. Further, FPPR takes only O(|V])
additional space. Specifically, 4 x |V| space is used in the worst case for node
addition. For node deletion, additional E space is required. Thus FPPR takes
a total O(]V + E|) additional space. The experiments are performed over sev-
eral synthetic and real-world networks considering different dynamic behavior
of the network. Random graph generators from the networkX library are used
to test FPPR for link addition and deletion. The experimental results show
that the ranking of the proposed method is highly correlated with the rank-
ing of the benchmark Power Iteration-based recalculation and better than the
state-of-the-art methods like Fast Incremental PageRank (FIPR) [31] and Off-
set Score Propagation (OSP) [29]. The FPPR is also tested on the simulation
of a real-world graph of growth and decay together. The proposed method has
better performance than FIPR [31]. In summary, the major contributions of
the paper are

1. We propose FPPR algorithm for the dynamic network, which takes less
computation and space with respect to other comparing methods, includ-
ing classical and state-of-the-art algorithms. The proposed algorithm can
estimate the PageRank for both node and link addition and deletion.

2. We experimentally show that the updated page ranks are highly corre-
lated with those of the Power Iteration (PI) method. Spearman’s rank
correlation coefficient is used to compare the ranking of the proposed
FPPR with that of the comparing methods.

3. We showed with experiments that the proposed algorithm works with dif-
ferent network changes for evolving networks. Both growing and decaying
networks are simulated.
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The paper is organized as: Section 1.1 describes the graph model, Section 2
provides a brief literature review, the proposed FPPR method and its rationale
are presented in Section 3, experiments performed and corresponding results
are reported in Section 4. Finally, Section 5 describes the conclusions of the
research work.

1.1 The Model

In the paper, a directed network is represented with graph G(V, E) where V
is a set of nodes in the network and £ =V x V is the set of edges. The graph
is directed i.e., e(u,v) # e(v,u). Also, we assume that there is no self-loop in
the graph. Symbols used throughout the paper are provided in Table 1 for the

reader’s reference.

Table 1 Symbol Table

Symbol Remarks

G graph

%4 set of vertices

n number of nodes

E set of edges

U, v nodes

Lin(u) inbound neighbours of u

Tout(u) outbound neighbours of «

p probability of random surfer to restart a new walk

P transition probability matrix

T PageRank vector

T PageRank of node u

o convergence threshold of PI method

c 1—p

m upper bound of number of edges which could be visited in
each iteration

Qof fset (n x 1) offset seed vector

quffsetH L1 length of 9of fset

c restart probability

€ error tolerance

dout(u) outdegree of w i.e. |Tout(u)]

dk, g average outdegree of k nodes

AV (u) approximate visits of u

AV (u,v) contribution of score of node u to v

edgeWT (u,v)
Pn+

Pl+

P

pi—

davg

Vs

Es

R

edge weight between u, v

probability of adding node

probability of adding link

probability of deleting node

probability of deleting link

average degree of the graph

the set of nodes that are updated

the set of edges concerning ks

the number of random walk simulations
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2 Related Work

Since the inception of WWW in the 1970s, the size of the internet has been
increasing on a rapid scale. There is a need for ranking pages to find relevant
information from it. This led to the invention of search engines to make web
searches possible for any user query. With the increase in size rank of the
pages need updates. The early search engines use algorithms like HITS [14]
and PageRank [21]. Over the years, there have been many methods to get
PageRanks, which can be divided into (i) Classical PageRank, (ii) Static Monte
Carlo-based methods, and (iii) PageRank for dynamic networks.

2.1 PageRank

PageRank [21] defines the importance of web pages based on the link structure
of the web. PageRank is inspired by the eigenvector centrality measure. The
PageRank of any node w is calculated based on the set of nodes (T';,(u))
that point to u (backward links) and the set of nodes (T'py:(u)) that u points
to (forward links). Then the ranking of any node u (m,) is given by, m, =
ZbGFout(ilL) m. The PageRank for nodes with no hyperlinks is given by

Total number of nodes ™
In simple terms, it uses a random surfer model where the random surfer

clicks out-links with probability 1 — p and terminates its walk to start a new
walk at a random page with probability p. The PageRank transition matrix
(P*) is as follows.

P =1 —p)P—I—p%I (1)

where I is the unit square matrix, n is the number of nodes in the network. P
is transition probability matrix in which each entry is #(u) when (u,v) € E
and 0 otherwise. Here dpyi(u) = |Tout(u)| is the out-degree of u. The simple
pseudo-code for calculating the PageRank vector (7) is described below.
while 6 > ¢ do
a1 — (@) px
e = |7r(i+1) — 7T(i)|
end while

The ¢ is the convergence threshold provided by the user, and (i + 1) is the
current iteration. The converged 7(**1) is final PageRank vector.

2.2 Static Monte Carlo based PageRank Algorithms

The Monte-Carlo methods are used to approximate classical PageRank [21].
In [25], it is stated that PageRank is nothing but a finite-state Markov Chain
and there exists an eigenvalue 1. Hence m = P*7 and 7 is the final rank vector.
Replacing P* with (Eq.1) gives the following equation that is interpreted [32]
as the distribution of all the random walks ending at each node.
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There are many variations evolved [2, 5, 25, 28, 32] from the above formu-
lation for approximating PageRank (7). All these methods majorly follow four
different strategies.

1. Monte Carlo end-point with a random start: In this type of method,
simulation of N number of random walks initiated at any random node
in the graph. The final PageRank of any node u is calculated as the total
number of random walks terminating at u, divided by the total random
walks. Final rank of u is defined as 7, — [andom walk tgrmination at u]

2. Monte Carlo end-point with cyclic start: Here, simulation of N
random walks initiated at every node w in the graph with an equal number

of simulations m. The final PageRank of any node u is defined as m, =
[terminations at u]
NXxm .
3. Monte Carlo complete path: These methods involve simulation of N

number of random walks initiated at every node in the graph with an
equal number of simulations m. The PageRank of any node w is defined

[visits,]
Sn_qvisits’
4. Monte Carlo complete path stopping at the dangling nodes: It is

similar to the Monte Carlo complete path, but the random walk stops at
the dangling node. A dangling node is a node with no out-links. In this
method, R number of random walks is simulated starting from each node,

and the random walk terminates at dangling nodes. The PageRank of any

) " .
node u is defined as 7, = %7 where n is total number of nodes.
u=1

as m, = where n is total number of nodes.

It is shown in [28] that out of all the mentioned methods, the last strategy
shows better performance in terms of execution time.

2.3 PageRank for Dynamic Networks

Dynamic networks are those networks where nodes and links get added or
deleted dynamically in real time. This is more practical in today’s web 2.0
applications. Many algorithms for the dynamic network were proposed in the
literature. These are broadly classified into two categories:

1. Aggregation algorithms [6, 8, 16]: In this type of method, the algo-
rithm carefully finds the subset of the graph in the vicinity of the updated
node or edge, and other parts of the graph are assumed to be supern-
odes. This gives the smaller graph and then computes the PageRank
using static methods. The disadvantages of this approach include accu-
racy, approximation error, and slower execution time. Accuracy in this
type of algorithm purely depends on the selected subset [3]. The approx-
imation error can also accumulate over time. It involves high aggregation
computation resulting in a slower execution time.

2. Monte Carlo based algorithms [4, 19, 20, 29, 31]: On the other hand,
Monte Carlo based approaches use the theory of Markov Chains [11]. In
this method, the algorithm needs to store all the random walks made
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along with the visits that each random walk contributes to each node.
The random walk segment is adjusted only if its path has an updated
node or edge [19, 31]. On the other hand, the Offset Score Propagation
(OSP) [29] algorithm first calculates offset scores around the modified
edges and then propagates the offset scores across the updated graph.
Finally, it merges these scores with the current Random Walk Restart
(RWR) [27] scores to get the updated RWR scores. In [20], whenever
an update happens, the residual is calculated, and the PageRank vector
is updated by adding the residual. Most recent algorithm proposed in
[4] uses Chebyshev polynomials to approximate PageRank. Monte Carlo
methods have two major issues. First, high space usage as the graph
evolves. Along with graph evolution, random walks that need to be re-
initiated also get lengthy. Second, the random walk segment is to be
removed, and the simulated new random walk segment follows the same
distribution but is actually a different segment. Hence it brings errors.

2

, O
L @
3

(a) (b)
Fig. 1 Link chains examples (a) without loop and (b) with loop

3 Proposed Fast Pessimistic dynamic PageRank
(FPPR) for Evolving Directed Graphs

In this section, we present the FPPR algorithm, which is capable of recalcu-
lating the PageRanks of a directed network upon the topological changes in
the network.

3.1 FPPR for Node addition and Link addition

When a new node is added, FPPR [22] calculates the expected score of random
surfers considering the static graph. That is it tries to calculate the expected
score generated by the random walks if the Monte Carlo method is executed
on the graph after the changes in the network. We calculate this score in two
phases. We will explain this process through examples shown in Fig. 1. Let
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‘x6” be a newly added node. The expected value of (considering p = 0.2) of
random walks through out-link reaching ‘x6’ considering a static Monte Carlo
simulation is 80%. This is what we would like to calculate in the first phase.
We call this score as Approximate Visits defined in Definition 1. We assume
the incoming link is linear in the second phase. This linear assumption makes
it easier to check the visits carried by random walks initiated at any node in
the chain (all the connected nodes with the same ID), especially when there
exists a loop in the chain. For example, in Fig. 1(a), R random walks starting
from the node (1) holding chain ID ‘id1’ would have reached ‘x6’ in 3 hops
as shown in orange color, i.e., the expected number of visits is R * (0.8)3.
Similarly, the random walk initiated at node (2) must have gone ‘x6’ in 2
hops (the expected visit is R * (0.8)2) as shown in blue color, and the random
walk initiated at node (3) must have gone ‘x6’ in 1 hop (the expected visit is
R (0.8)!) as shown in pink color. All these contribute to the score of the new
node. This linearity assumption will provide the correct expectation value for
chain ‘id1’ in Fig. 1(b) even though it is a loop in the network. Accordingly,
we defined Link Sensitivity Index in Definition 2. This linearity assumption
is taken in a pessimistic way. The literal meaning of ‘pessimistic’ is to think
about the worst case happening often. While estimating the random walker
visits, we believe that the existence of a loop is the worst-case scenario. Because
it will be hard to estimate how many times the random walkers had taken
the loop and how many visits it contributed to any node. As a ‘pessimistic’
view, we consider there will always be some existence of a loop, and a linearity
assumption is required to calculate the baseline values of the update. Note that
the same formulation may not be valid for chain ‘id4’ in Fig. 1(b). However,
the algorithm thinks pessimistic that either the chain is linearly contributing
or it is a loop. In such a case, the algorithm is prone to error. For example,
in Fig. 1(b), chain ‘id4’ doesn’t have a loop, but still, the algorithms assume
the chain is linear/has a loop and accordingly calculate the PageRank scores
of ‘x6’. However, we expect this error will be very small. A similar process is
adopted in addressing the out-link from the new node as well.

A new link addition in a network would only modify the score of the target
node. When a new link is added between source and target, the above-discussed
procedure is followed on the target node to estimate the PageRank of the
target node.

Definition 1 (Approximate Visits (AV)). AV estimates the contribution of
the incoming links to the newly added node that a random walk might have used
if the random walk is executed from scratch. If nodes have bidirectional edges,
a mazx of approximate visits is considered for both nodes. It is calculated as:

1

dout (u)

AV (v) + * (1 —p)* (AV (u)) (3)

u€lpn (v)

Here, T, (.) and doyt(.) return the set of incoming neighbors and out-degree
respectively. AV (u,v) is the contribution of score of node u to v iff u, v are
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neighbors and it is defined as:

AV (u,v) * (1 —p)* (AV(u)) (4)

out (U)

Definition 2 (Link Sensitivity Index (LSI)). LSI defines the amount of scores
a node gets from the whole link-chain it is joining. In other words, it is the
sum of scores received by the random surfers initiated from the nodes of the
chain which are added before this node. We assume the link chain is linear,
and the LSI is mathematically defined by:

L ell- (o))
(I-o¢)

Here, ¢ = 1— p is the probability that a random surfer moves forward and i

1s the length of the chain up to the node v;. In our experiment we took ¢ = 0.8.

LSI(v;) < c+c(e)t +c(e)® +c(e)® + ... + c(c) (5)

Algorithm 1 Calculate the approximate PageRank of the newly created node

: Input: new node u, R = 1000
: for all v € Ty, (u) do
Assign linkID to the node as described in text
linkIDJv].length < linkID][v].length + 1
temporary_Var +— R x LSI(n = linkID|v].length)
comment: LSI calculated by Eqn. 5
linkSensitivityIndex + max (linkSensitivityIndex, temporary-Var)
approzVisits < AV (v) comment: Using Eqn. 3
edgeWT (v,u) < AV (v,u) comment: Using Eqn. 4
end for
10: approxVisits < approxVisits + R + linkSensitivityIndex
11: finalResult[u] <— approxVisits, totalVisits < totalVisits + approxVisits
12: approxVisits, linkSensitivityIndex < 0
13: for all v € T'yye(u) do

TR W N

© ® 3

14: if u has bidirectional edge with v then

15: replace both nodes with maximum visits

16: else

17: Assign link ID to the node as described in text

18: linkIDlu].length < linkID[u].length + 1

19: temporary_Var — R x LSI(n = linkIDu].length)
comment: LSI calculated by Eqn. 5

20: approzVisits < AV (u) comment: Using Eqn. 3

21: finalResult[v] + approxzVisits + linkSensitivityIndex

22: totalVisits < totalViists 4+ approxVisits + linkSensitivityIndex

23: end if

24: edgeWT (u,v) + AV (u,v) comment: Using Eqn. 4
25: end for
26: Output: finalResult + totalVisits
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FPPR does not keep track of all the random walk segments or aggregations.
FPPR takes only 4 x |V| space for node/link addition as the proposed algo-
rithm uses 4 vectors of size V namely linkID, approxVisits, LinkI Dlength,
outdegree. That is, space complexity is O(|V|). For a network with billions of
nodes, this provides a significant improvement.

The Algorithm 1 & 2 shows the steps of FPPR algorithm for node and link
addition. Each node in the network will have a linkID and all the nodes in a
chain will have the same linkID. The linkID of a node is the ID given to a
node to identify the chain to which it belongs. In other words, linkID keeps
track of distinct chains in the graph. More than one chain may pass through
one node. In that case, our proposed method uses the lower linkID for that
node. One may choose it randomly because this convention does not have any
effect on the scores. As we are keeping track of every link(chain) in the graph,
we store the length of each linkID.

Algorithm 2 Calculate the approximate PageRank when new link is added

: Input: new link (source u, target v), R = 1000

: Assign linkID to the target node as described in text

: linkID[v].length < linkID(v].length + 1

: temporary_Var — R x LSI(n = linkIDlu].length)
comment: LSI calculated by Eqn. 5

. approxVisits < AV (u) comment: Using Eqn. 3

: edgeWT (u,v) < AV (u,v) comment: Using Eqn. 4

. final Result[v] < approxzVisits + linkSensitivityIndex

. totalVisits < totalViists + approxVisits + linkSensitivityIndex

. Output: final Result = totalVisits

BwW N =

© 00 3 O U

3.1.1 FPPR algorithm for Node deletion

When a node is deleted, FPPR opts for a Selective Breadth-First Update
(SBFU) approach (Algorithm 3) from the deleted node. As part of node dele-
tion, the score contribution from the source node to the target node is used to
update the changes in the target node to approximate PageRank. These values
can be stored as edge weight parameters during graph evolution itself. In Algo-
rithm 1, lines 8, 24 stores AV (u,v) as edge weight parameter. The AV (u,v)
is removed from the target node (v) in the first level of SBFU. In other words,
whatever score is contributed from the source node to the target node in the
addition phase is now removed /subtracted from the target node. From the next
level, the edge weight (AV (u,v)) and PageRank score of the nodes are updated
accordingly, i.e., all the neighbors of the nodes that updated (scores (AV (u,v))
being subtracted) are pushed into the queue and further Breadth First Traver-
sal continues until the queue is empty. Over time during the addition phase, it
might happen that a source node’s contribution (AV (u,v)) is greater than the
target node’s score itself. In that case, the target node’s score is already under-
valued. So, no need for further subtraction/removal of its score. This is the
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reason that the algorithm SBFU puts only selected nodes, for which incoming
edge weights and incoming node’s score have been updated, into the queue.

Algorithm 3 Selective Breadth First Update for node deletion

1: Input: visited, queue, del Node, final Result, totalVisits
2: visited.append(delNode)
3: queue.append(del Node)
4: while queue do
5: update the linkID for only delNode with any of the incoming node’s linkID
6: m = queue.pop()
7 for all neighbour € T'oyt(m) do
8: if neighbour is not in wvisited then
9: linkI D[neighbour] = linkID[m)|
10: update the linkID[neighbour].length and linkID[delNode].length
11: previousEdgeWt < edgeWt(m, neighbour)
12: currentEdgeWt <+ AV (m, neighbour)
13: changedEdgeW't < previousEdgeWt — currentEdgeWt
14: if changedEdgeWt > 0 then
15: totalVisits < totalVisists — changedEdgeW't
16: final Result[neighbour] — finalResult[neighbour] —
changedEdgeW't
17: edgeWt(m, neighbour) < currentEdgeWt
18: queue.append(neighbour)
19: end if
20: end if
21: visited.append(neighbour)
22: end for

23: end while
24: Qutput: totalVisits, final Result

Algorithm 4 FPPR for link deletion

. Input: source, target

: weight < edgeWt(source, target)

: totalVisits < totalVisits — weight

: finalResul[target] < final Result[target] — weight

: update the linkID of the target as discribed in the text
. Output: totalVisits, final Result

D TR WY

3.1.2 FPPR algorithm for Link deletion

For link deletion, the simple local update is used in FPPR. The AV (u,v) value
is removed from the target node. This local update causes approximation error
but doesn’t seem significant in the experimental results.
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4 Experiments and Results

Table 2 Dataset used for different experiments

Experiment for Node Addition & Deletion
Name V] |E| Min Max Min Max
|Fin| ‘an| ‘Foutl |Fout‘
Weibol [7] 40 66 0 12 0 6
Weibo2 [7] 206 206 0 45 0 2
Weibo3 [7] 759 780 0 201 0 3
Weibo4 [7] 817 901 0 28 0 297
Random351 351 497 0 7 0 7
Random527 527 783 0 8 0 10
Random751 751 1094 0 8 0 9
Random801 801 1212 0 7 0 11
BA1 [1] 55 154 0 36 0 3
BA2 [1] 105 304 0 48 0 3
BA3 [1] 255 754 0 105 0 3
BA4 [1] 305 904 0 102 0 3
L1 [23] 75k 500k 0 3046 0 1803
L2 [18] 77k 900k 1 2540 0 2508
L3 [24] 14k 9M 0 6173 1 435
L4 [24] 43k 14.5M 0 3539 0 359
Experiment for Link Addition & Link Deletion
ER1 [9] 100 1977 9 30 10 35
ER2 [9] 200 7949 24 55 24 54
ER3 [9] 350 7750 11 34 0 90
ER4 [9] 500 11327 9 35 0 126
GNM1 [15] 100 120 0 4 0 5
GNM2 [15] 100 1000 2 19 1 18
GNMS3 [15] 500 250 0 4 0 4
GNMA4 [15] 500 1700 0 10 0 10
Experiment for Real World Simulation
ReW1 [24] 445 1357 0 21 0 17
ReW2 [24] 1218 3697 0 25 0 24
ReW3 [24] 1480 4057 0 23 0 25
ReWSIM1 53 167 0 8 0 13
ReWSIM2 89 250 0 8 0 11
ReWSIM3 98 2233 0 89 0 50

4.1 Dataset

Different experiments for comparing the performance of proposed FPPR have been
conducted on synthetically generated networks as well as real-world networks. These
experiments consider node/link addition/deletion. Both the Random Network and
Barabasi-Albert [1] networks are used for testing FPPR for node addition and dele-
tion. For node deletion, upto 50 percent of the nodes chosen randomly are deleted.
The random graph generators in Networkx library like Erdos-Renyi [9], GNM graphs
[15] are used for experimenting FPPR for link addition and deletion. For link deletion,
up to 10 percent of the randomly chosen links are deleted. The real-world networks
are Wiebo reshare network of [7] and reptilia-tortoise network, aves-weaver network,
mammalia-voles network, bio-mouse-gene network, bio-human-gene2 network from
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the NetworkRepository [24] and Slashdot social network [18], Epinions social net-
work [23] from Stanford Large Network Dataset Collection. The salient features of
these graphs are presented in Table 2.

As the Erdos-Renyi random graph does not support growth, we use Algorithm 5
to generate the Random network. In order to get the dynamic character, we started
with one node and added each node according to their creation for Barabasi-Albert
and Random networks.

Algorithm 5 Random graph generator
1: Input: number of nodes N comment: single node ‘0’ exist in the graph
2: for all z € I';,,(1,N) do
3: add = to Graph G

4: indegree < random]|0, 1]
5: if indegree then
6: G.addEdge(random|0,z — 1], )
7 end if
8: outdegree < random[0,z — 1]
9: shuf fle.list]0, ..z — 1]
10: while outdegree do
11: G.addEdge(x,list[outdegree])
12: outdegree——
13: end while

14: end for
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Fig. 2 PageRank for Randomly Sampled 10 nodes of different algorithms.
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Fig. 3 Spearman Correlation between all four approaches over the different data sets for
node addition

4.2 Comparing Methods

The proposed methods have been compared with the following methods.

e Powerlteration (PI) [21]: We consider this method as a benchmark in our
experiments. In the experiment, we restarted PI algorithm and recalculated
PageRank for the whole graph on appropriate (depending upon experiments)
node/link addition or deletion.

® Static Monte Carlo (MC) [28]: Static Monte-Carlo method is the method of
approximate PageRanks of the network using Monte Carlo method. We imple-
mented the version of the complete path with dangling nodes. Similar to PI,
we recalculate the PageRanks on network changes in appropriate steps. The
number of random walks considered in the experiment is 1000.
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® Fast Incremental PageRank on Dynamic Networks (FIPR) [31]: The
method is designed for dynamic networks and proposed in 2019. As our algo-
rithm is designed for dynamic networks, we included this method as related
research. Parameter R is set to 16 in the experiments.

e Offset Score Propagation (OSP) [29]: This method was created for dynamic
networks and proposed in 2018. As our algorithm is designed for dynamic
networks, we included this method as related research.

4.3 Comparing Parameters

All comparing algorithms were executed on different graphs. As expected, the abso-
lute values of PageRanks by different algorithms of a node are different. The results
for 10 random nodes for all the datasets with respect to node addition are shown
in Fig. 2 for reference. Hence, comparing different algorithms in terms of absolute
values of the PageRank is not fair. Therefore Spearman’s rank correlation coefficient
[26] is used to compare the ranking of the proposed FPPR with that of the com-
paring methods. The Spearman correlation between two vectors will be high when
observations have a similar rank between the two variables and it will be lower other-
wise. A value of it between 0.8 to 1 is considered to be strongly correlated [30]. Apart
from the Spearman Rank correlation coefficient, the comparing parameters include
(i) Change in Spearman Rank correlation coefficient over time, (ii) Execution time.

4.4 Results
4.4.1 FPPR for node addition

Accuracy: The results of Spearman’s ranking coefficient for all nodes in the net-
work for node addition are shown in Fig. 3. It is evident from the result that the
proposed FPPR is highly correlated with the benchmark PI method. Median and
mean Spearman’s correlation with PI method for all the experiments performed are
0.98 and 0.97, respectively. Further, the proposed method is equal to or better than
FIPR for all the networks except Weibo2. The proposed method is also performing
better or close to the OSP algorithm. Note that MC and PI are highly correlated as
both are recalculated over the full graph once a new node is added to the graph.

Spearman’s rank correlation with changes in network: As part of the
experiment, we would like to see how Spearman’s correlation coefficient changes
with the addition of nodes. We recalculate Spearman’s correlation coefficient of the
proposed algorithm against the benchmark Power Iteration for the addition of each
10 nodes. The result is plotted in Fig. 4 for 6 data sets. The value dipped around
26% for both random networks, while the Barabasi-Albert network shows consistent
improvement in the value of Spearman’s correlation coefficient.

Execution Time: We checked the overall execution time of different comparing
algorithms and found that the proposed algorithm is much faster than all the methods
we experimented with for all data sets with respect to node addition. The comparison
is presented in Fig. 5.
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Fig. 8 Examples

4.4.2 FPPR for node deletion

Accuracy: For testing FPPR deletion accuracy, we deleted 50 percent of the ran-
domly chosen nodes from the network and plotted the heatmap of Spearman Rank
correlation in Fig. 6 similar to node addition. It has been observed that FPPR is
performing well with respect to the benchmark PI method. Median and mean Spear-
man’s correlation with PI method for all the experiments performed for node deletion
are 0.89 and 0.90, respectively. FPPR is also observed to be equal to or better than
FIPR and OSP.

Spearman’s rank correlation with changes in network: The Spearman
rank correlation coefficient is recorded after regular intervals and plotted in Fig.
7. It is transparent that there is a gradual dip in the Spearman Rank correlation.
The reason for the downhill is that for deletion, FPPR uses Selective Breadth First
Update (SBFU). In SBFU, the breadth-first traversal is used, marking visited nodes.
In such a case, one node is visited only once, i.e., only one update is possible on each
neighboring node. For the scenario shown in Fig. 8(a), considering the deletion of
the node x, there is a need to update the score of the neighbors of x more than once
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because the scores of n1,n2,n3 are updated accordingly as x deleted. Still, there is a
link between n2,n3 and n3,nl, which must be crawled. This needs further update of
score in node n3 and nl as shown in Fig. 8(b). SBFU cannot update the neighboring
nodes more than once, accumulating errors over time.

Execution Time: The execution time for all the comparing methods with
respect to node deletion is plotted in Fig. 9. The FPPR takes a little higher or equal
execution time as FPPR’s deletion time depends on the set of updated nodes along
with its associated edges.
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4.4.3 FPPR for link addition and deletion

Accuracy: The accuracy for the link addition is shown in the Fig. 10 ((a) to (h)).
Median and mean Spearman’s correlation with the PI method for all the exper-
iments performed are 0.95 and 0.93 for link addition, and 0.94 and 0.90 for link
deletion, respectively. This shows that the proposed FPPR is highly correlated with
the benchmark PI method. The proposed FPPR is also performing reasonably good
in comparison with FIPR except for GNM2 graphs.

As a part of the experiment, 10 percent of the randomly chosen links are deleted
from the graph, and PageRank scores are computed with respect to all comparing
algorithms. The accuracy for link deletion is depicted in the Fig. 10 ((i) to (p)). When
coming to the deletion, FPPR performs better than all the comparing methods. Note
that all the graphs used for the link addition and deletion experiment Monte Carlo
method (MC) had a poor performance as the graphs generated are highly dense.

Spearman’s rank correlation with changes in network: The change in the
spearman rank correlation is recorded in regular intervals ( after addition or deletion
of every 10 links) is shown in the Fig. 11 ((a) to (h)) & ((i) to (p)). For link addition,
the FPPR spearman rank correlation with PI has minute fluctuations and gradually
decreases. For link deletion, there are sharp transitions in the graph. This is due to
the local update of the FPPR for link deletion.

Execution Time: The execution time of the proposed FPPR is much faster than
all the comparing methods for link addition and deletion as evident from Fig. 12.

4.5 Accuracy of FPPR with the change of parameter p

As part of the experiment, the behavior of FPPR is noted with respect to the change
of the parameter p (the probability of a random surfer restarting its walk). The
parameter p is set to values 0.2,0.4,0.5,0.6,0.7,0.8,0.9 and checked the accuracy of
FPPR. The results are captured in the Fig. 13. It is evident from the results that the
changes in Spearman’s Correlation Coefficient are very small (between 0.02 to 0.04)
in general except Weibo network where it is about 0.12.

4.6 Performance on Large Scale Data

Four different large-scale temporal datasets have been used to testify the performance
of the proposed FPPR algorithms. These networks have nodes ranging from 14K to
77K while the number of links are ranging from 500K to 14.5M. As the datasets
are temporal we added the nodes and edges on the network based on their times
and calculated the Spearman’s Correlation at the end of the generation of the full
network. The results are shown in Fig. 14. The results of Spearman’s Correlation
coefficient are very close to 1 for 3 out of 4 datasets while the results of L2 are also
more than 0.8. These results show high accuracy of the proposed method. One of the
main objectives of the experiment was to see the performance in terms of execution
time. The proposed algorithm is able to generate results in less than 10 seconds for
all the data sets.We also captured the accuracy of the FPPR VS Power method
along with the FPPR VS Matrix multiplication method using Pseudocode. 0 for few
graphs in Fig. 14(c).
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Fig. 11 Spearman Correlation of FPPR VS PI over time. Each time tick denotes the
addition/deletion of 10 links in the network.
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4.7 Approximation error with the exact PageRank

Although Power Iteration is a well-known method for practically performing the
PageRank calculation, we wish to see how this is different for matrix multiplication
methods. We experimented with small-size datasets and calculate Spearman’s cor-
relation coefficient for the proposed FPPR against both the Power Iteration method
and the Matrix Multiplication method. The result is plotted in Fig. 15. As expected
the correlation coefficient is lower with the matrix multiplication method, however,
it is not too far from it. In fact, in both cases, the results show a high correlation
with the ranking as the results are over 0.8 for all the data sets.

Table 3 Computation complexities and space complexities of different PageRank
algorithms.

Algorithm Addition Time Deletion Time Space
complexity complexity complexity
. kn? kn?
Power Iteration Q 1((170)) Q 1((17,))) O(n)
Monte-Carlo Qknf) k) O(n)
(p) (p)
method
(knR) (knR)
FIPR OEy OEy O(nR)
OSP O(mloga—o) g, oam)| Omboda-o g rrom)|  O(VF)
Our Method Ok x dk,, O(|Vs| + | Es]) O(|V| + |E))

4.8 Computation Complexity

Computation complexities for all the operations, node addition, node deletion, link
addition, and link deletion of different algorithms along with the space complexity
are shown in Table 3. The worst-case complexity of the proposed algorithm for node
addition is O(k x dgvg), where k is the number of nodes/links added to the network
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Fig. 15 Spearman Correlation of FPPR with Power Iteration and Matrix Multiplication
method

as in each update the Algorithm 1 updates for all the outgoing links (line 13) and
calculates for all incoming edges (line 2). Each calculation can be done in linear time
with the formula presented in Equations 3, 4 and 5. The worst-case complexity of
the proposed algorithm for node deletion, link deletion is O(|Vs| + |Es|) and O(1)
respectively, where Vs is the set of nodes that are updated, Es is the edges associ-
ated with those updated edges. Space required for the proposed algorithm is 4 x |V/|
for node and link addition to keep 4 vectors corresponding to linkI D, approxVisits,
LinklI Dlength, and outdegree. In order to have better deletion techniques interme-
diate AV (u,v) are stored for each links in the network. Hence, it is taking O(|E|)
space. That follows the cumulative space requirement is O(|V| + | E|).

4.9 FPPR for real-world graph simulation (modeling
growth and decay together)

Eventually, real-world graph simulators (Algorithm 6) are used to test FPPR in
both graph decay and graph growth. In this real-world graph simulation, all four
operations have been incorporated: node addition, node deletion, link addition,
and link deletion. All the four mentioned operations are performed based on four
independent probabilities (pn+,pi+,Pn—,pi1—). We tried to capture graph growth
and decay by adjusting the independent probabilities. We used them in our exper-
iments to check the accuracy of FPPR concerning other mentioned PageRank
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Algorithm 6 Real World graph simulation

1: Input: number of operations K
2: while K do

3: addnodeProb « random.uniform(0, 1)
4: addlink Prob < random.uni form(0,1)
5: delnode Prob < random.uni form(0,1)
6: dellink Prob < random.uni form(0, 1)

7 if addnodeProb < p,+ then

8 algo.(1)

9: K——

10: end if

11: if addlinkProb < p;+ then

12: algo.(1)

13: K——

14: end if

15: if delnodeProb < p,_ then

16: algo.(3)

17: K——

18: end if

19: if dellinkProb < p;— then

20: algo.(4)

21: K——

22: end if

23: end while

algorithms. The setup used for graph growth and decay is as follows. For grow-
ing graph, pp4+ = 0.2,p1 = 0.2,p,— = 0.01,p;— = 0.01 and for decaying graph,
pnt+ =0.1,p4 =0.01,pp,— =0.3,p— =0.2.

Accuracy: The accuracy test is performed on various real-world datasets as
shown in Table 2 and also on the graphs generated by the real-world simulator
(Algorithm 6). Both the graph growth and decay are tested for accuracy. For graph
growth and decay, the number of operations (node add, node delete, link add, link
delete) are set to 50, 100, and 200. For growth, FPPR is in good correlation with
respect to the benchmark PI method. Median and mean Spearman’s correlation with
the PI method for all the real-world graph growth simulation experiments are 0.90
and 0.86. For decay, FPPR is reasonably correlated with the PI method, and median
and mean values of 0.76 and 0.76 were achieved. In all the dataset graphs, FPPR
performed better than the FIPR. The results are shown in the Fig. 16 ((a) to (f))
for graph growth, Fig. 16 ((g) to (1)) for graph decay.

Spearman’s rank correlation with changes in network: The changes in
the spearman rank correlation are captured in regular intervals (after every ten oper-
ations) for both graph growth and decay. The results are shown in the Fig. 17 ((a)

o (f)) for node growth, Fig. 17 ((g) to (1)) for link growth and Fig. 18 ((a) to (f))
for node decay, Fig. 18 ((g) to (1)) for link decay. The graph represents time on
the x-axis, the change in Spearman rank coefficient of all the comparing methods
with respect to the benchmark PI method on the y-axis, and a bar plot showing the
number of nodes/links on the z-axis. In the graph growth phase, it is evident that
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the proposed FPPR is performing better than or equal to FIPR. FPPR is even per-
forming equally with respect to the static MC method for the graphs RWS1, RWS2,
ReW1, and ReW3. FPPR had a gradual dip in Spearman rank correlation in the
graph decay phase but performed better than or equal to FIPR.

Execution Time: The proposed FPPR has faster execution times compared to
all the comparing methods in both graph growth and decay phases. The results are
presented in Fig. 19 ((a) to (f)) for graph growth and in Fig. 19 ((g) to (1)) for graph
decay.
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Fig. 16 Spearman Correlation between all four approaches over the different data sets for
RW growth and decay
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5 Conclusion

The present paper proposed a new algorithm for calculating PageRank for dynamic
directed graphs. The algorithm estimates the PageRank concerning node addition,
link addition, node deletion, and link deletion. We showed through experimental
results that the results of the proposed algorithm are highly correlated with that
of the benchmark Power Iteration method. In particular, the minimum correlation
in ranking found for the addition of node, deletion of node, the addition of link,
and deletion of the link are 0.95, 0.82, 0.77, and 0.83 respectively. The proposed
FPPR is also shown to perform better in the ranking than the FIPR algorithm and
better than or equal to the state-of-the-art OSP algorithm for all different topological
changes in the network. The execution time is significantly faster while providing
more acceptable results.
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Fig. 18 Spearman Correlation of FPPR VS PI over time along with node and link decay

While the PageRanks of growing and sinking networks with the proposed FPPR
method show comparable and better results against FIPR, the execution time for the
proposed algorithm are very less. The proposed algorithm performs better in terms
of execution time and accuracy for all the operations except the node deletion case.
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