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Abstract

The problem of target set selection for large scale social networks is addressed in the paper.
We describe a novel deprecation based greedy strategy to be applied over a pre-ordered
(as obtained with any heuristic influence function) set of nodes. The proposed algorithm
runs in iteration and has two stages, (i) Estimation: where the performance of each node
is evaluated and (ii) Marking: where the nodes to be deprecated in later iterations are
marked. We have theoretically proved that for any monotonic and sub-modular influence
function, the algorithm correctly identifies the nodes to be deprecated. For any finite set
of input nodes it is shown that the algorithm can meet the ending criteria. The worst case
performance of the algorithm, both in terms of time and performance, is also analyzed.
Experimental results on seven un-weighted as well as weighted social networks show that
the proposed strategy improves the ranking of the input seeds in terms of the total number
of nodes influenced.

Keywords: Top-k nodes, Social networks, Greedy deprecation strategy, Influence
maximization, Big data, Target set selection

1. Introduction

Information diffusion over social networks in the form of “word-of-mouth” is studied in
different fields of research including epidemiology [9, 34], sociology [2, 39] and economics
[15, 16]. More recently, scholars of computer science got interested in the field due to the
emergence of online social networks, like, Twitter, Facebook and YouTube, and their extreme
popularity. Different research issues have been addressed in this direction [11, 18, 20, 21, 38,
41]. One of the important problems within the area of said research is target set selection.

A variant of the problem of target set selection is to select k-top influential nodes such
that they maximize the influence on the network. There are other variants in the literature
such as those in [3, 29] which we will not cover in this study. Solutions of the target set
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selection problem have endless applications. For example, they are useful in viral market-
ing through online social networks [10, 27], in identifying top stories in news network, in
finding the highest influencing blogs in the blogger network [26], in providing personalized
recommendation [17, 40], in determining the impact of an article from the scientists’ citation
network, and in spreading social awareness through social media.

Diffusion of information, in a nutshell, is the process by which an innovation or idea
is spread over the networks by means of communication among the social entities [36]. It
is the newness of the information that drives the cascade over the networks. One of the
simplest models of the diffusion process available for the computer science researchers is
independent cascade model [15, 20]. The model runs in discrete steps. In each step, an
active or influenced node tries to activate one of its inactive neighbors with a probability
p, called propagation probability or diffusion speed. Irrespective of its success, the same
node will never get a chance to activate the same neighbor. The process, however, is highly
stochastic, and Kempe et al. [20] showed that the optimization problem is NP hard. They
also provided a Greedy Hill Climbing algorithm, which gives (1 − 1

e
− ε) approximation

to the optimal solution. However, the algorithm is time consuming, especially for large
scale networks. For example, it takes days to compute on a network of size 30K nodes [6].
Various improvements of the greedy algorithm in terms of computation time are described
in [3, 12, 24]. On the other hand, several heuristic algorithms [3, 4, 6] are developed which
run faster, but they provide sub-optimal results.

This paper addresses the aforesaid problem within the context of information diffusion
on large scale social networks. We describe a deprecation based greedy strategy (DGS) for
target set selection and apply it over a list of nodes which are pre-ordered based on some
fast heuristic influence score. We theoretically prove that the method correctly identifies the
nodes to be deprecated as well as provides a guaranteed solution to the target set selection
problem when the influence function is monotonic and sub-modular. The convergence of
the proposed algorithm is proved analytically. It is shown experimentally, with seven real
life large scale social network data sets (both weighted and un-weighted) that applying DGS
over a heuristic algorithm produces better solution for the target set selection problem.

The paper is organized as follows: Section 2 describes the preliminary concepts of net-
works related to this study. Problem statement and related investigations are briefly ex-
plained in Section 3. Section 4 illustrates the Deprecation based Greedy Strategy (DGS),
and its proof of correctness, convergence and optimization guarantee. Experiments and
results are reported in Section 5.

2. Preliminaries

We describe in this section some notations and definitions related to social networks.

Social Networks. A social network represents a social structure made up of individuals or
organizations and their relations (e.g., friendship, co-authorship of scientific papers, co-
appearance in a movie, and following-followers). Social networks are described using a
graph G(V,E) where V is the set of nodes representing the individuals or organizations and
E is the set of edges representing the social ties.
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Information Diffusion. Information diffusion process and the effect of “word-of-mouth” in
social networks is well studied in sociology [36]. During the diffusion process there exist
two sets of nodes, namely, active and inactive nodes. The active nodes are those who have
already adapted the behavior, i.e., have the information, while the inactive nodes are those
who do not have. One of the fundamental processes of information diffusion available in
the literature is cascade model. Goldenberg et al. [15, 16] inspected cascade model in
the marketing perspective. In this model, a node u is influenced by its neighbor v with a
probability λu,v, called propagation probability.

Independent cascade (IC) model. The IC model of [15] is the simplest form of the cascade
model of diffusion and runs in discrete time. Initially, a few nodes are activated. At each
successive step, an active node tries to activate one of its inactive neighbors. The node,
however, gets only one chance to activate that particular node irrespective of its success.
The process terminates when no further activation is possible. Edge e(u, v) ∈ E is assigned
a non-negative propagation probability λu,v which indicates the probability at which node
u is activated by v.

Centrality. In a social network, centrality of a node provides a measure of its relative im-
portance in the network. This is considered to be an important structural attribute [14] of
the network. Two ways of measuring it are as follows:

• Degree Centrality: Degree centrality of a node v is defined in terms of the numbers
of incident edges as [30],

CD(v) =
n∑
i=1

e(ui, v) (1)

where

e(ui, v) = 1, if the nodes ui and v are connected, i.e., an edge exists between them

= 0, otherwise.

• Diffusion Degree Centrality: The diffusion degree of a node v is defined as [33],

CDD(v) =
∑
u∈Γ(v)

{λu,v + (λu,v ×
∑
i∈Γ(u)

λi,u)} (2)

where Γ(v) denotes the neighbor set of v, and λu,v denotes the propagation probability
by which node v influences node u.

One may note that Eq. 1 is based on the structural property of the network, whereas,
Eq. 2 incorporates the property of information diffusion along with the structural in-
formation. Thus, it is closely coupled with the independent cascade model of diffusion.
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3. Problem Statement and Related Work

Consider an influence function σ : 2V → N for a social network G(V,E). Given a set of
initial active nodes S ∈ 2V , σ(S) returns the expected number of active nodes at the end of
the information diffusion. In top-k nodes selection problem, we are interested to find the k
number of influential nodes, which in turn produce the maximum influence in the network
after diffusion of the information. So, this is a maximization problem defined as follows:

maximize
S

σ(S)

subject to |S| = k, k > 0.

Let us now describe some of the related studies conducted so far. Domingos and Richard-
son are the pioneers in examine the algorithmic aspect of the problem and provided a proba-
bilistic model based on Markov random field [11, 35]. Later, Kempe et al. [20] and Kleinberg
[22] studied it as a discrete optimization problem and showed that the optimization problem
is NP hard. They provided a general greedy hill climbing algorithm (shown in Algorithm
1) to approximate the initial active set, and proved that the influence function σ(.) is sub-
modular and monotonic in nature for independent cascade model of information diffusion.
Furthermore, they derived the provable approximation guarantees for the algorithm. How-
ever, their greedy algorithm is time consuming, especially for large scale social networks.
Leskovec et al. [24] investigated the top-k nodes problem focusing mainly on (i) contaminant
detection for water distribution network and (ii) finding important stories in a blog network.
They proposed “Cost Effective Lazy Forward (CELF)” for optimization which is as fast as
700 times than the greedy algorithm [20]. On the other hand, Chen et al. in [5] designed
a new heuristic algorithm, namely, the degree discounted algorithm which provides much
better results than the classical degree and centrality based heuristic algorithms. Even-Dar

input : A Social Network G(V,E) and k
output : Set S ∈ 2V having cardinality k

initialization: S := ∅
while |S| 6= k do

v∗ ← arg max
v∈V \S

σ̂(S ∪ {v});

S ← S ∪ {v∗};
end

Algorithm 1: General Greedy Algorithm

et al. [13] studied the problem in the context of a probabilistic voter model [7, 19]. It was
shown as a special case that the high degree heuristic, which appears to be the most natural
solution of the problem, provides the optimal solution. There are other approaches to deal
with the top-k nodes problem using such as co-operative game [29], tree properties [1] and
set based coding algorithm [20].
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4. Deprecation based Greedy Strategy (DGS)

In this section, we describe a new deprecation based greedy strategy, algorithm and
the proof of its correctness. We also address the convergence of the algorithm and its
approximation guarantees.

4.1. Strategy

In the greedy algorithm, mentioned in Section 3, in each iteration, the marginal contri-
bution towards information diffusion is evaluated for every node with respect to the seeds,
already selected. The node with maximum marginal contribution is added to the set of
existing seeds. Thus, for selecting k nodes, the marginal contributions of all the nodes to-
wards information diffusion are evaluated k times. Since the information diffusion process
is stochastic, the influence is usually estimated by simulation over sufficiently large (about
10,000 times) number of executions. This, in turn, requires a huge computation time.

Centrality based heuristic algorithms, on the other hand, chooses k number of nodes by
their centrality scores, and the algorithms are fast. The assumption here is that, a correlation
exists between the centrality scores and influence. However, it may not be always true.
The correlation depends upon the network, relations and the information diffusion process.
During the execution of the algorithm, it may happen that a node is classified as ‘higher
influencing’ based on the centrality, but it actually has lower influence in the network.

Thus it appears that a judicial integration of the merits of greedy and heuristic algorithms
may lead to a system which is efficient in terms of both computational time and performance.
Accordingly, we have developed a deprecation strategy, stated as follows:

Unlike the greedy approach where a node is added when its marginal contribution is
maximum, in deprecation based greedy strategy, we remove the least performing node. To
speed up this process we deprecate the multiple lower influencing nodes at a time. For this,
we take the advantage of the centrality measures and pre-order the nodes accordingly. The
strategy of identifying a node to be deprecated is based on the realization that if there exist
k number of successors having higher influence, then the concerned node is designated as
wrongly positioned, i.e., a position higher than its actual. We mark it as a candidate for
removal, i.e., deprecate it. Similarly, we identify all those nodes whose marginal influence
is lower than those of at least k of its successors, and mark all of them as deprecated in
a single iteration. Subsequent iterations are executed only over the resulting reduced list
(ordered set of nodes).

4.2. Algorithm

For a given social network G(V,E) let us define an order < over V such that,

u < v ⇔ σ̃({u}) ≥ σ̃({v}).

Here, the function σ̃ : 2V → N is a heuristic estimation of the influence function σ(S). As
stated in Section 3, an influence function σ(.) returns the number of nodes influenced by the
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Estimation
Marking

initialize: Si ←
∅, i← 1, j ← 0

Si ← Si ∪ {vj}

j ← j + 1

put(τσ(.), σ̂(Si), i)

Monte Carlo
simulation of ICM

for Seed Si
(σ̂(Si))

i← i+ 1

j < i

i < m

calculate: Σ̂i ← σ̂(Si)− σ̂(Si−1)
∀i < m

Find Set R where,
R = {(vi, vj) : vi, vj ∈ V ; Σ̂i < Σ̂j; j > i}

for each (vi, vj) ∈ R
add(g(vi), vj)

∀vi ∈ τ
if sizeOf(g(vi)) > k
then add(D∗, vi)

output: subseq(τ, 1, k)output: τ

remove(τ,D∗)

input τ, k,m

τσ(.)

|D∗| = 0

|D∗| > 0

size(τ) = k

input τ

Figure 1: Block diagram of DGS algorithm

input set of seeds. In our experiment, we calculated σ̃(.) using different well known heuris-
tic algorithms (e.g., high degree heuristic, diffusion degree heuristic and degree discount
heuristic).

Now let us define an ordered m-tuple on V m as τ = (v1, v2, ..., vm) where vi < vi+1,∀i =
1, 2, ...,m− 1; m ≤ n, and there is no repetition in τ , i.e.,

vi = vj ⇒ i = j. (3)

The influence function σ(.) for IC model of information diffusion is sub-modular and
monotonic in nature [20, 21, 22]. The monotonicity of the function σ : 2V → N conforms to
the fact that when the number of active nodes is higher, influence is also higher i.e.,

σ(S ∪ {v}) ≥ σ(S) ∀v ∈ V and ∀S ∈ 2V . (4)
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The sub-modularity condition corresponds to the fact that

σ(S ∪ {v})− σ(S) ≥ σ(T ∪ {v})− σ(T )

∀S ⊆ T ⊆ V and ∀v ∈ V ;S, T ∈ 2V
(5)

i.e., the influencing effect of a node on the network decreases as more and more nodes get
activated.

The greedy deprecation strategy runs iteratively and has two stages, namely (1) Estima-
tion and (2) Marking. Input for the algorithm consists of the tuple τ of size m, as described
above, and k where n ≥ m > k. Here, τ represents the sequence of top m nodes based on
the order <.

1. Estimation: In this stage, we first select a node vi from the given sequence τ , and
include it as a seed in S with the same sequence as it appeared in τ . Then we calculate

τσ(.) = (σ̂(S1), σ̂(S2), ..., σ̂(Sm))

where
Si = {v1, v2, ..., vi}.

σ̂(S) is the estimated value of influence caused by the seed set S. This is usually
obtained through simulation. The marginal contribution of node vi to the cascade,
when all vj,∀j < i are already in the seed set, is computed as

Σ̂i = σ̂(Si)− σ̂(Si−1).

2. Marking: The output of the aforesaid estimation stage, τσ(.), is considered as the
input of the marking stage. Here, we mark one or more nodes for deprecation based
on their marginal contribution Σ̂i as follows.
Let us define a relation R on V as

R = {(vi, vj) : vi, vj ∈ V ; Σ̂i < Σ̂j; j > i}.

The relation R can be interpreted as a mapping which maps a node vi to its better
performing (in terms of marginal contribution to the cascade process) successors vj, j >
i. R is anti-reflexive, anti-symmetric and transitive. These properties have been proved
in Section 4.3.
Let a function g : V → 2V be defined as

g(vi) = {vj : (vi, vj) ∈ R}. (6)

g(vi) denotes the set of all the successors of node vi which perform better than itself.
Therefore, the set of nodes to be deprecated in order to select the top-k nodes is

D∗ = {vi : |g(vi)| ≥ k}.
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The subsequent iterations are performed on the reduced tuple, as obtained by removing
|D∗| components from the original tuple τ . The iteration stops when |D∗| = 0, and the first
k components of the reduced tuple τ are returned as the resulting target set (seeds). The
block diagram of the algorithm is provided in Figure 1.

4.3. Properties of Relation R

1. Anti-Reflexive: R is anti-reflexive, i.e., (vi, vi) /∈ R.

Proof. As per the interpretation, (vi, vj) ∈ R when node vj is a successor of node vi
and Σ̂i < Σ̂j. A node vi can not be its own successor (Eq. 3). Hence, (vi, vi) /∈ R.

2. Anti-Symmetric: R is anti-symmetric, i.e., if (vi, vj) ∈ R then (vj, vi) /∈ R.

Proof. Let us consider that (vi, vj), (vj, vi) ∈ R. This implies, vj is a successor to vi
and vi is also a successor to vj. This is not possible due to the fact that a successor
node vj can not be a predecessor node to the same node vi (Eq. 3). Hence, when
(vi, vj) ∈ R then (vj, vi) /∈ R and vice-verse (by contradiction).

3. Transitive: R is transitive, i.e., when (vi, vj) ∈ R and (vj, vk) ∈ R then (vi, vk) ∈ R.

Proof. Let us consider, (vi, vj) ∈ R. Therefore, vj is a successor to vi and Σ̂i < Σ̂j.

Also consider, (vj, vk) ∈ R. Then, vk is a successor to vj and Σ̂j < Σ̂k. As the relation

< on N is transitive, we have Σ̂i < Σ̂k. Similarly, we can argue that the successor
relation is also transitive, because if a node v is a successor to u and w is a successor
to v, then w is also a successor to u. Therefore, vk is a successor to vi.
That means, both vk is a successor to vi and Σ̂i < Σ̂k imply (vi, vk) ∈ R. Hence, the
relation R is transitive.

4.4. Proof of Correctness

Lemma 4.1. For a sub-modular influence function, removing a node u from S will no way
decrease the marginal contribution of any node v ∈ S \ {u}.

Proof. Let us consider the above statement as false, i.e, on removing a node u there exists
at least one node v ∈ S \ {u} such that

σ(Q)− σ(Q \ {v}) < σ(S)− σ(S \ {v}) (7)

where Q = S \ {u}.
But, as per the sub-modular property of σ(.) explained in Eq. 5, the following inequality

σ(Q)− σ(Q \ {v}) ≥ σ(S)− σ(S \ {v}) (as Q ⊂ S). (8)

is true. Eqs. 7 and 8 contradict each other. Therefore, the assumption on the existence of
node v for which marginal influence decreases, is wrong for a sub-modular influence function.
Hence, for a sub-modular function, removing a node u from S will never reduce the marginal
contribution of a node v ∈ S \ {u}. (proved)
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Lemma 4.2. For any node v having |g(v)| ≥ k there exist at least k number of nodes
producing higher marginal influence in the network.

Proof. As per the definition of function g(.) (Eq. 6), we can say that if a node u is an
element of g(v) then node u has more marginal gain than node v. When the cardinality
of g(v) is equal to or more than k, then it is obvious that the node v has k or more nodes
which have higher marginal gain than that of node v. (proved)

Lemma 4.3. For any two nodes u, v in D∗, if (u, v) ∈ R then there must be at least k nodes
not in D∗ having higher marginal influence than those of u and v.

Proof. A node v ∈ D∗ satisfies |g(v)| ≥ k (by definition). Therefore, the node v has k or
more nodes having higher influence in the network (from lemma 4.2). The same applies to
node u. Thus we only have to prove that at least k such elements are not members of D∗.

Now given (u, v) ∈ R implies v ∈ g(u). Let us consider the base case, i.e., |g(u)| =
k, |g(v)| = k and assume that g(v)∩D∗ = ∅. It is given that v ∈ D∗ and v ∈ g(u). Therefore
g(u) ∩D∗ = {v}. That is, node u has only k − 1 nodes with higher marginal influence and
they are not elements of D∗. Now, let w ∈ g(v), i.e., (v, w) ∈ R. Thus, (u,w) ∈ R (due
to transitivity property of R). Therefore, any node w ∈ g(v) is also a member of g(u) i.e.,
g(v) ⊂ g(u). Clearly, |g(u)| > k (as |g(v)∪{v}| > k). So, node u has at least k nodes which
have higher marginal gain and are not member of D∗ (As g(v) ∩D∗ = ∅).

For the sake of argument, consider also w ∈ D∗, then v has only k − 1 nodes satisfying
the condition. The same is also true for u. But, as |g(w)| ≥ k (by definition), w has k
such nodes. With the same argument stated above one can show that g(w) ⊂ g(v). Thus,
v surely has at least k nodes those are not elements of D∗, and the same also applies to
node u. Thus, by the law of induction, we can now conclude that even if g(.) ∩ D∗ 6= ∅
for some arbitrary nodes (here u or v) there exists at least one successor (here w ∈ D∗ i.e.,
|g(w)| ≥ k) for which g(.) ∩D∗ = ∅.

Hence, for any pair of nodes u, v ∈ D∗, if (u, v) ∈ R then there exist at least k nodes,
not members of D∗, producing higher marginal influence in the network. (proved)

Lemma 4.4. For all nodes v ∈ D∗ there exist at least k number of nodes not in D∗ producing
higher marginal influence in the network.

Proof. This lemma can be easily inferred from the aforesaid lemmas. A node v ∈ D∗ satisfies
|g(v)| ≥ k (by definition). Therefore, the node v has at least k number of nodes having higher
influence in the network (from lemma 4.2).

Now there are two possibilities for a node w ∈ g(v), either w /∈ D∗ or w ∈ D∗.

• When w ∈ g(v) & w /∈ D∗, we do not have to prove anything further. It concludes the
statement of the lemma.

• When w ∈ g(v) & w ∈ D∗ i.e., v, w ∈ D∗ and (v, w) ∈ R then also there exist at least
k elements having higher marginal influence than both of v, w, but not members of
D∗. (from lemma 4.3).
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Hence, for all v ∈ D∗ there exist at least k number of nodes, not belonging to D∗, that
would produce higher marginal influence in the network. (proved)

Theorem 4.1. Given a sub-modular influence function σ(.), relation R and function g(.)
defined over V , it is safe to remove all the nodes v ∈ D∗ and not consider them as members
of the target set without affecting the performance.

Proof. In the problem of target set selection, we are asked to select k number of seeds. For
any node v ∈ D∗, there exist at least k number of nodes which are not member of D∗, and
provide better marginal gain than by node v (lemma 4.4). That is S \D∗ will still contain
k or more elements producing higher influence. Again, removing any node from the seed
will never reduce the marginal performance of the remaining nodes (lemma 4.1). Thus, the
removal of all nodes v ∈ D∗ will not produce a less optimal solution. Hence, it is safe to
remove these nodes from further consideration. (proved)

4.5. Convergence

Theorem 4.2. Given a social network G(V,E) with finite number of nodes, |D∗| converges
to 0.

Proof. Let us consider the node v ∈ V as a member of D∗. Therefore, the node v will be
removed and would not further be considered in the next iterations. So, in each iteration,
the number of considerable nodes (say, V ′;V ′ ⊆ V ) gets reduced.

Since V is a finite set, V ′ is also a finite set. Now to be a member of D∗, the node v
must have |g(v)| ≥ k for any constant k > 0. Thus the maximum possible cardinality of D∗

is (|V ′| − k). Clearly, as nodes are removed from V ′, |V ′| converges to k. If we consider that
|D∗| never gets a value 0 until |V ′| converges to k then it is clear that after |V ′| converges,
any further iteration would not lead to add any node to D∗ as none can satisfy the condition
|g(v)| ≥ k. Hence, we can infer that |D∗| converges to 0.

4.6. Worst Case Performance Analysis

In this section we present the performance analysis of DGS (deprecation based greedy
strategy), both in term of the worst case time requirement and worst case influence guaran-
tee.

Theorem 4.3. Given a social network G(V,E), a heuristic function σ̃ : 2V → N and an
order u < v ⇔ σ̃({u}) ≥ σ̃({v}), defined over V , the set of seeds S of cardinality k selected
by DGS ensures at least the same influence as of selecting the set of seeds of cardinality k
based on the order <.

Proof. In the process of greedy deprecation strategy, we input the ordered m-tuple τ =
(v1, v2, ..., vm) defined over V m where vi < vi+1, ∀i = 1, 2, ...,m; m ≤ n. We then find D∗

and remove them from τ . The next iteration runs over the reduced tuple τ . Finally, after
convergence, we select the top-k nodes from the reduced τ . Now, in the worst case, the
algorithm might run for only one iteration, i.e., the stopping criterion is satisfied just after
the first iteration. In that case, we may not find any node for deprecation. In this scenario,
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the final output will be the top-k nodes selected from the ordered m-tuple τ which is basically
the same set of nodes selected based on <. Hence, in the worst case, DGS produces the
result, exactly the same as obtained using <.

Theorem 4.4. Given a social network G(V,E) and an m-tuple τ, (m ≤ |V |), the worst case
time requirement of the DGS algorithm is O((m+ k)2).

Proof. Worst case scenario in DGS occurs when the following two conditions are satisfied.

1. the stopping criterion does not meet even when only k number of nodes remain, and

2. for each iteration, only one node is marked as deprecated.

Thus, in such case the total number of iterations required is (m− k) and in each iteration,
all the remaining nodes are evaluated for their marginal contribution. Total number of
evaluation conducted here is m+ (m− 1) + (m− 2) + ...+ (m− k + 1) + (m− k) i.e.,

m(m− k + 1)− (m− k + 1)(m− k)

2
=

(m− k + 1)× (m+ k)

2

=
(m+ k)2 − (2k − 1)(m+ k)

2

Assuming an evaluation be performed in 1 operation, the worst case time complexity of DGS
is in the order of (m+ k)2 as k < m, i.e., the time complexity is O((m+ k)2).

5. Experiments and Results

Experiments have been conducted over seven real life social networks to validate the
aforesaid mathematical findings. We have considered Independent Cascade Model of infor-
mation diffusion and applied DGS over the list of nodes pre-ordered by high degree heuristic
(HDH), diffusion degree heuristic (DiDH) and degree discount heuristic (DDH). Performance
of DGS is evaluated in two ways. Firstly we measure the improvement made by DGS over
the seeds selected by the corresponding heuristic methods. Then we compare the overall
influence with other target set selection algorithms. Following sub sections mention the
detailed characteristics of the data sets, the configurations of DGS, discussion on comparing
methods and the results on seven data sets.

5.1. Data Sets Used

The five un-weighted and two weighted social networks are used in the experiment.
The un-weighted networks are friendship networks of Twitter [8], Slashdot [25] and Pokec
[37], European Email Communication Network (EUEmail) [23], and ego network of Google+
(GPlus) [28]. Two weighted networks used are friendship network of an online community of
University of California [32] (OCLinks) and US airport network [31] (USAirport). Properties
of these data sets are listed in Table 1.
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Table 1: Features of Data Sets

Property Twitter Slashdot EUEmail Pokec GPlus OCLinks US Airport

Nodes 455818 82168 265214 1632803 107614 1899 1574
Edges 822487 948464 420045 30622564 13673453 20296 28236
Nodes in Largest WCC1 455818 82168 224832 1632803 107614 1893 1572
Edges in Largest WCC 822487 948464 395270 30622564 13673453 20292 28235
Nodes in Largest SCC2 2208 71307 34203 1304537 69501 1893 1402
Edges in Largest SCC 10401 912381 151930 29183655 9168660 20292 28032
Avg. Clustering Coefficient 0.0175 0.0617 0.3093 0.1094 0.4901 0.1094 0.5042
Number of Triangles 57769 602592 267313 32557458 1073677742 14319 245172
Fraction of Closed Triangles 0.0002781 0.02411 0.004106 0.01611 0.6552 0.01969 0.1721
Diameter 7 12 13 11 6 8 8
90-Percentile Effective Diameter 4 4.7 4.5 5.3 3 3.7 3.8

1 Weakly Connected Component

2 Strongly Connected Component

5.2. Implementation of DGS

Heuristic Influence Function. As the DGS runs on an ordered tuple which is based on a
heuristic influence score, an influence function is required to order the nodes. Any heuristic
influence function would work for this purpose. In the experiments, the following heuristic
influence functions are used,

• High Degree: Here, node’s influence score is the in-degree score of the node.

• Diffusion Degree: In this function, node’s influence score is calculated based on the
diffusion degree score proposed in [33].

• Degree Discount: The function calculates the discounted degree score as per [5].

Estimation of σ(.). There are no deterministic way to estimate the value of σ(.). In our ex-
periments σ(.) is estimated by Monte Carlo simulation. Monte Carlo simulation is described
in Section 5.3.

Input Size. One may note that the best performance in terms of influence is obtained when
m = |V |. However, this is time consuming. In order to reduce the execution time we consider
a value of m, say m = 10k, less than |V | for the data set used.

5.3. Performance Evaluation

Performance of the selected set of seeds is analyzed based on the total nodes influenced
by them. The total number of nodes influenced by a set of seeds is estimated using stochastic
simulation. We have used Monte Carlo process for the same. We executed the simulation for
10, 000 times and reported the average value as result. Each run of a Monte Carlo simulation
of independent cascade model of information diffusion works as follows. It takes the seed set
(i.e., the initial set of active nodes) and the network as input. At any time t the simulator
selects an active node randomly and tries to activate one of its incident edges associated
with an inactive node. The activation occurs with a probability referred as the propagation
probability. If succeeds, the neighboring node is added to the set of the existing active
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nodes. Otherwise, it flags the edge as visited. Once visited, the same link is not considered
further by the same node. The simulation stops when no further activation occurs, and the
cardinality of the set of the active nodes is returned as the number of total nodes influenced.

5.4. Comparing Methods

We analyze the performance of DGS in the following two ways:

A. We first execute the greedy deprecation strategy on the ordered tuple based on the
three heuristic influence functions discussed before. We then compare the performance
of the k seeds selected after applying DGS on these functions with the seeds selected by
the corresponding heuristic algorithm. That is, we select seeds using DGS on high degree
influence function (DGS on HDH) and compare them with those selected by the high degree
heuristics (HDH). Similarly compare the diffusion degree heuristic (DiDH) with DGS on
diffusion degree influence function (DGS on DiDH), and the degree discount heuristic (DDH)
with DGS on degree discount influence function (DGS on DDH).

B. We compare the overall performance of DGS with the other target set selection algo-
rithms. For this purpose we run our experiment for different values of k. We compare
our results with heuristics methods (HDH, DiDH and DDH) as well as the recent Prefix
excluding Maximum Influence Arborescence Model (PMIA). We have implemented PMIA
algorithm as described in [4] with the best possible value of the threshold parameter (θ) as
noted in the original paper.

5.4.1. Reference Point

We use CELF [24], a well known fast greedy algorithm which indicates at least
1

2
(1−1/e)

optimization, as a reference method. That means, it is desirable that an algorithm produces
results closer to that of CELF. In the experiment, k seeds obtained by CELF are simulated
using Monte Carlo simulation to get the approximate possible influence by those k seeds,
and this value is plotted as the reference line in the results. A point to note here is that
the input size of CELF is also restricted to 10k as in DGS in order to have fair comparison
between CELF and DGS.

5.5. Results

5.5.1. Twitter Network

Figure 2 shows bar charts to demonstrate the effect of DGS on different heuristic influence
functions for Twitter data. The Twitter data is a directed social network where a node
represents a user, and a link represents the following-followers relationship between users.
We have experimented with different values of the propagation probability. Here, we show
the results for two such different values for illustration. Each bar is marked with the actual
number of nodes influenced by 50(= k) seeds. A reference line showing the number of nodes
influenced by 50 seeds, selected with CELF, is placed on every chart. The charts clearly
show that applying DGS on HDH and DDH increases the total number of nodes influenced
by 50 seeds. With 0.05 propagation probability, DGS provides 14% and 16% gain when
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(a) Propagation Probability 0.05 & k = 50 (b) Propagation Probability 0.1 & k = 50

Figure 2: Effect of DGS over total number of nodes influenced for different heuristic influence functions on
Twitter network

applying over HDH and DDH respectively and for propagation probability 0.1, the rise is
28.5% and 28.2%. For DiDH, applying DGS also produces better results but the difference
is not significantly high. A point may be noted here is that the amount of influence cause
by an algorithm would never decrease due to the application of DGS on it (as proved in
Theorem 4.3).

(a) Propagation Probability 0.05 & k = 50 (b) Propagation Probability 0.1 & k = 50

Figure 3: Bar chart showing the execution time (in log with base e) of different algorithms on Twitter
network

The execution time of different algorithms for Twitter network is plotted in Figure 3.
The value shown here for each bar is the log value with base e of the actual execution time.
As expected, the execution time of the DGS on HDH, DGS on DiDH and DGS on DDH
is higher compared to that of the corresponding heuristic method. However, it is seen that
the DGS algorithm runs much quicker than CELF. In Figure 3(a) we see that the log value
of execution time for DGS on DiDH is 13.894 which corresponds to the value of 1, 081, 520
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(a) Propagation Probability 0.05 & k = 50 (b) Propagation Probability 0.1 & k = 50

Figure 4: Number of iteration require for different algorithms of Twitter network

(a) Propagation Probability 0.025 (b) Propagation Probability 0.05

Figure 5: Number of influenced nodes vs number of seeds for different algorithms on Twitter network

milliseconds, whereas log value 14.464 of CELF corresponds to 1, 913, 309 milliseconds. So,
CELF takes almost 76.91% more time as compared to the slowest version of DGS algorithm.
If we compare the number of times a node’s performance is evaluated in CELF with the
DGS, the difference (e.g., 7, 8 or 9 in DGS compare to 50 in CELF) is evident. In case
of CELF, the algorithm iterates k times; on the other hand, the proposed algorithm can
identify the weak seeds in fewer numbers of iterations. A chart showing the number of
iterations required by the different algorithms is shown in Figure 4. The proposed DGS
converges after a very small number (< 10) of iterations. HDH and DiDH do not require
evaluating a node’s performance, so the number of iterations is 0. For DDH, the number
of iterations is equal to k (= 50). However, in each iteration it does not evaluate a node’s
performance; it just recalculates the degree of a node with the discounted value based on
the previous iteration. So, in terms of execution time it is superior to CELF and DGS.

Experiment has also been conducted with different values of k. Two such results are
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shown in Figure 5, as example. The graph clearly shows that for all values of k, DGS
provides better quality seeds in terms of the number of nodes influenced. The superiority
becomes more prominent after k = 10.

(a) (b)

Figure 6: Effect of DGS in terms of (a) total influence (b) execution time of different algorithms on EUEmail
network. Propagation probability is set to 0.05 and k = 50

5.5.2. EUEmail Network

EUEmail network data was generated using email communication data from a large
European research institution. Each node in the network corresponds to an email id and
directed link is created between two nodes i and j, if i sends a message to j. We have
experimented with this network in the same way as we have done with Twitter data. Results
are shown in Figure 6 which shows an improvement made by our algorithm for all the
heuristics. For example, there are 7.1%, 6.9% and 4.63% improvement when we apply DGS
over HDH, DiDH and DDH respectively.

It is observed that DGS when applied over different heuristics takes very less compu-
tational time compared to CELF, however, the seeds selected by DGS and CELF produce
almost similar influence in the network. Comparison of the execution time is shown in
Figure 6(b). It is clear from the diagram that the time taken even by the slowest DGS
(e.g., 431, 021 milliseconds, i.e., log value 12.974) is much less than the time taken by CELF
(28, 456, 333 milliseconds, i.e., log value 17.16).

Similar to Twitter data we compare the overall performance for different values of k
and plotted the variation of the number of nodes influenced vs k in Figure 7. The graph
shows that for all values of k, DGS provides better quality seeds than the other comparing
methods.

5.5.3. Slashdot Network

The network of Slashdot is a friendship network of the technology related news website
Slashdot. Each node is a user here, and the connection between them indicates whether a
user is a friend to other or not. Figure 8 shows the results with the propagation probability
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Figure 7: Number of nodes influenced vs number of seeds for different algorithms on EUEmail network with
propagation probability 0.025

(a) (b)

Figure 8: Effect of DGS in terms of (a) total influence (b) execution time of different algorithms on Slashdot
network. Propagation probability is set to 0.01 and k = 50

0.01. We selected 50 top seeds using different comparing methods and find the total influ-
ence using Monte Carlo simulation in the network. Unlike Twitter and EUEmail networks,
Slashdot is seen to have only a small improvement after applying DGS over the heuristics.
This is true for even with other values of k. Figure 9 shows a plot which depicts the total
influence of selected nodes vs k. Execution time-wise it shows similar patterns as we found
in the cases of Twitter and EUEmail.

5.5.4. OCLinks and USAirport Networks

OCLinks and USAirport are weighted networks, i.e., each edge is associated with a
weight. The weight denotes differently for different data sets. We, in our experiments, nor-
malized these weights and considered them as propagation probabilities. The OCLinks data
originated from an online community for students at the University of California, Irvine. The
data set contains 1899 users who sent or received at least one message. Weights are given
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Figure 9: Number of nodes influenced vs number of seeds for different algorithms on Slashdot network with
propagation probability 0.01

(a) (b)

Figure 10: Effect of DGS in terms of (a) total influence (b) execution time of different algorithms on OCLinks
network (k = 50).

Figure 11: Plot showing number of nodes influenced vs number of seeds of OCLinks network.
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to each edge denoting the number of messages sent from the source to the destination user
of the edge. The network of USAirport is downloaded from the Bureau of Transportation
Statistics (BTS) Transtats site (Table T-100; id 292) with the following filters: Geogra-
phy=all; Year=2010; Months=all; and columns: Passengers, Origin, Dest. The weights here
correspond to the number of seats available on the scheduled flights.

(a) (b)

Figure 12: Effect of DGS in terms of (a) total influence (b) execution time of different algorithms on
USAirport network. (k = 50)

Figure 13: Plot showing number of nodes influenced vs number of seeds of USAirport network.

Results for OCLinks data are shown in Figures 10 and 11. Figure 10(a) shows the
improvement upon applying DGS over all the three heuristics. For all the cases we see
that the resulting influence after applying DGS is at per with the benchmark CELF. The
same is evident in Figure 11 for other values of k > 35. Further, the proposed DGS takes
significantly lower time than CELF (e.g., 37.978 sec against 394.993 sec) producing almost
the same influence.

On the other hand, for USAirport network applying DGS produces the same influence
as of CELF (Figure 12(a)), whereas taking much less time 69.519 sec (log value 11.149)
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(a) Gplus (b) Pokec

Figure 14: Plots showing influenced nodes vs k results of different algorithms. k varies from 1 to 50.
(propagation probability 0.01)

compare to CELF’s 743.282 sec (log value 13.519) (Figure 12(b)). Figure 13 shows the plots
comparing the DGS with other algorithms for different values of k upto 50. Here we observe
an interesting phenomenon. For HDH and DiDH the influence is almost same for all the
values of k. This is due to the fact that these two approaches select all the nodes from the
same neighborhood which lead to the same influence. DDH and PMIA show better results
after k > 15, but noway close to that of CELF. The proposed strategy, on the other hand,
produces superior results by selecting seeds which have the same influence as of CELF in
the network for all the values of k.

5.5.5. GPlus and Pokec

The data set of Google+ (Gplus) is an ego network extracted from the ‘circles’ of Google+
social network. On the other hand, Pokec is a most popular online social network of Slovakia.
Pokec network is a friendship network where each node is a user. Results of these GPlus
and Pokec corroborate to the observations as found for Twitter or EUEmail, i.e., DGS could
correctly extract the better quality seeds. For reference we have included some sample
results in Figure 14.

6. Discussions and Conclusion

In this paper, we proposed a new strategy, called deprecation based greedy strategy (DGS)
and the corresponding algorithm for finding top-k influential nodes of social networks from a
list of nodes pre-ordered through the help of heuristic measures. The algorithm searches for
the lower contributory nodes in the list and marks them as deprecated. These deprecated
nodes are then removed from any further consideration. We show analytically that when
the influence function is monotonic and sub-modular, the algorithm correctly identifies the
deprecated nodes, i.e., removal of these nodes does not affect the best results. We also proved
theoretically that for a finite number of nodes, the algorithm converges in finite time. We
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calculated the possible approximation guarantees for the proposed algorithm and analyzed
its worst case time requirement.

Experiments have been conducted to verify the theoretical findings over five large scale
social network data and two weighted network data. We used three heuristic influence
functions for pre-ordering the nodes. We computed the total influence of the selected seeds
by these heuristic influence functions, and of the seeds obtained after applying DGS over
these pre-ordered sets of nodes. Comparing the total influence of the selected seeds before
and after applying the DGS shows that applying DGS improves the results for all the data
sets, except Slashdot network where the performance is similar. These signify that applying
DGS does no way produce inferior quality of seeds, as proved theoretically in Theorem 4.3.

It may further be noted that the scope of such improvement after applying DGS is likely
to be more (or less) if the heuristic method, in question, has lower (or higher) performance.
This is what is reflected in the results. For example, in Twitter data sets, the original gap
(difference of results of DDH and the benchmark CELF) in performance was 31%. When
we apply the proposed DGS, the gap is reduced to 12%, i.e., an improvement of the gap-
reduction by about 60%. On the other hand, for EUEmail, the original gap was only 7.7%
and this is further reduced by DGS to 0.7%, i.e, improvement in the reduction of the gap is
more than 90%.

Execution time-wise the proposed DGS takes much less time than CELF algorithm while
providing closer (for Twitter, EUEmail and GPlus) or similar (for OCLinks and USAirport)
influence. The algorithm also converges in less than 10 iterations in all the test cases we
experimented with.

Five out of seven network data sets, we experimented with, are large scale data, i.e.,
they are voluminous showing Big data characteristics. With these networks we achieved
performance comparable to that of the benchmark CELF, while reducing the execution
time by more than 50% for GPlus and Pokec, 76% for Twitter, 88% for Slashdot, and 98%
for EUEmail. Thus, the proposed strategy (DGS) is applicable to large scale networks, and
has strong promise in dealing with some of the Big data issues.
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