
An Efficient Algorithm to Reconstruct a Minimum
Spanning Tree in an Asynchronous Distributed

Systems
Suman Kundu

Department of Information Technology
Jadavpur University

Salt Lake, Kolkata - 700098
sumankundu.nsec@gmail.com

Dr. Uttam Kr. Roy
Department of Information Technology

Jadavpur University
Salt Lake, Kolkata - 700098

u roy@it.jusl.ac.in

Abstract—In a highly dynamic asynchronous distributed net-
work, node failure (or recovery) and link failure (or recovery)
triggers topological changes. In many cases, reconstructing the
minimum spanning tree, after each such topological change, is
very much required.

In this paper, we have described a distributed algorithm based
on message passing to reconstruct the minimum spanning tree
after a link failure. The algorithm assumes that no further
topological changes occur during the execution of the algorithm.
The proposed algorithm requires significantly fewer numbers of
messages to reconstruct the spanning tree in comparison to other
existing algorithms.

I. INTRODUCTION

A distributed network consists of several nodes and con-
nection among them. Each node is a computational unit, and
the connections between them can send and receive messages
in a duplex manner. Multiple paths may exist between a pair
of nodes. A Minimum Spanning Tree (hereafter referred to
as MST) of such a network is the minimally connected tree
that contains all the nodes of the network. Applications of
MST includes, effective communication in distributed systems,
effective file searching and sharing for peer-to-peer network,
gateway routing in local area network or bandwidth allocation
in multi hop radio network and other computational scenario.
Usually, a cost is associated with each link. The cost may indi-
cate distance between two nodes, or the time required to send
or receive data packets, or bandwidth of the communication
channel, or any other parameters. A MST always contains the
minimum cumulative cost within the network.

A distributed system is dynamic in nature i.e. in any
distributed network topological changes occur with respect to
time. A change can occur due to deletion or recovery of nodes
and links. In many situations, it is important to reconstruct
the MST after each topological change. The main hurdle to
reconstruct MST arises due to the asynchronous nature of
the system. Moreover, A node only knows local information.
If topological changes occur, it must be propagated to each
node via message communication. It is also possible that some
part of the network gets the latest knowledge, whereas some
portion does not. Algorithm should address this issue as well.

Several algorithms for constructing MST in distributed sys-
tems were proposed in last three decades. Most of these MST
construction algorithms are applicable in a static topology. In
this paper, we have proposed an algorithm based on message
passing to reconstruct an MST that works seamlessly even
in a dynamic topology. Our algorithm considers a single
link failure and assumes that no further topological changes
occur during the execution of the algorithm. It is also shown
that the total number of messages required to reconstruct
the spanning tree is significantly less in comparison to other
existing algorithms.

The rest of the paper is organized as follows: Section II
describes the related work and overview of our result. Section
III describes description of distributed algorithm, analysis and
proof of correctness. In section IV, we provide a result of
simulation; section V concludes the overall algorithm and
finally in section VI, we point out the further research areas
we are working on.

II. RELATED WORK

In their pioneer paper [2], Gallager, Humblet and Spira
proposed one of the first distributed protocols to construct
MST in year 1983. The protocol of [2] is further improved
in the protocol [3], [4], [5], [6], [7] and [8]. In [9], some
flaws of [5] are rectified. All these protocols of constructing
MST are developed for static topology. Some of them address
message efficiency and some of them address time efficiency,
as the performance measures for the algorithm.

However, the distributed systems are dynamic as described
in the previous section. Researchers are working on protocols,
which are resilient in nature to adopt the topological changes.
Few of such algorithms are given in [1], [12] and [14]. In
their paper [10] B. Das and M. C. Loui provide a serial and
a parallel algorithm to address the similar problem and later
improved by Nardelli, Proietti and Widmayer in their paper
[11]. These algorithms do not address the distributed version
of the problem. In paper [13], P. Flocchini, T. M. Enriquez,
L. Pagli, G. Prencipe, and N. Santoro provided a distributed
version of the same problem. In [13] authors provided with



the precomputed node replacement scheme. In our paper we
provide the improved version of the distributed algorithm of
[1] for a single link failure. In the following section, we will
describe the response of a link failure by [1].

A. Basic Algorithm of [1]

In the algorithm of [1], C. Chang, I. A. Cimett and S.P.R.
Kumar proposed a resilient algorithm which reconstructs the
MST after link failure and recovery. Complexity of the algo-
rithm for a single link failure is O(e), where e is the number
of links in the network.

A link failure is a process of fragment expansion i.e. A
link(which is a part of the MST) failure breaks the MST into
two different fragments. The failed link initiates the process
of recovery in the adjacent nodes. The initiator node generates
new fragment identity. In algorithm [1], authors suggest two
approaches to generate new fragment identity such that no
conflict occurs between subsequent topological changes. First
approach, is to include identity of all nodes of the fragment
into the fragment identity. Second approach is to maintain a
counter for each link. This counter counts the link failure and
includes the value along with weight of the node for generating
new fragment identity. In case of first approach, the size of
the fragment identity of a large fragment becomes very large.
So, the second approach is efficient in terms of message size.

If a link w(u, v), is broken in certain time and u be the
parent of v. In response to the link failure, u will generate
the new identity for the fragment like w(u, v), u, c where c
is the counter of topological changes of the link w(u, v).
Then u will forward the fragment identity to the root of
the fragment. However, in case of v, after generating the
fragment identity like w(u, v), v, c, it marks itself as root
of that fragment. After getting the new fragment identity,
root of these two fragments changes their fragment identity
and starts broadcasting REIDEN<id> using the tree links
and wait for the acknowledgment. Any intermediate nodes,
upon getting the REIDEN<id> message changes its fragment
identity to the id and sends the same message to its child
node. A leaf node, after getting the REIDEN<id> changes its
fragment identity and sends REIDEN ACK<id> to its parent.
Intermediate node, sends REIDEN ACK<id> to its parent
only after getting REIDEN ACK<id> from all of its children.
Receiving of the REIDEN ACK<id> message indicates that
all nodes of the fragment aware about the new identity value.
Root now changes its state to find and initiate the find
minimum outgoing edge (hereafter referred to as MOE) phase
by sending FINDMOE message over the children. When a
node receives FINDMOE message, a node changes its state to
find. In the find state each node starts to send TEST<id>
message via each non tree link. A TEST<id> message is
responded by either ACCEPT<id> or REJECT<id>. An
ACCEPT<id> message, indicates that the edge is outgoing,
leading to another fragment. An important thing to remember
here is that the ACCEPT or REJECT message should return
the identity number of the test message. This will help to
determine whether the message is for the current failure or

previous one. After identifying the MOE a node propagates
the FINDMOE ACK<w(MOE)> to upward. Where w(MOE)
is the locally known best outgoing weight, either its own
MOE or MOE received from its children (Whichever is
minimum). After receiving FINDMOE ACK<w(MOE)> root
sends CHANGE ROOT<id> through the same path it receives
the MOE. The CHANGE ROOT<id> reaches to the node
where the MOE of the fragment incident. The node marks
itself the new root of the fragment and sends CONNECT
message over the MOE. Connect subroutine works same as
the algorithm [2] and merge two fragments sharing the same
MOE and starts the next iteration.

B. Overview of Our Results

When considering the single link failure, our approach
provides a significant improvement on the total number of
messages required during reconstruction over the algorithm
of [1]. Also, the message size for some control message is
improved slightly.

After link failure, the fragment which contains the root node
of the MST is referred as root fragment in this paper. If the
root fragment contains E′ number of edges, then our algorithm
requires 2× E′ fewer messages to reconstruct the MST. Our
approach here is to use the previously known fragment identity
(say it as a historical data) for the root fragment. However, how
the algorithm evolves if another link failure occurs during the
execution is still under observation.

III. ALGORITHM TO RECONSTRUCTING MST AFTER LINK
FAILURE

We closely followed the response of the algorithm [1] for a
single link failure and found some improvement areas. In the
following subsections, we will describe the network model, our
observation regarding the algorithm [1], our contribution to im-
proving the algorithm, description of the modified distributed
algorithm, analysis of the outcome and proof of correctness.

A. Network Model

The communication model for the algorithm is modeled
as an asynchronous network represented by an undirected
weighted graph of N nodes. The graph is represented by
G(V,E), where V is the set of nodes and E ⊂ V × V is
the set of links. Each node is a computing unit consisting
of a processor, a local memory and also an input and output
queue. The input (output) queue is an unlimited sized buffer
to send and receive messages. A unique identification number
is associated with each node (Node i represent the node with
the identification number i).

Each link (u, v), assigned with a fixed weight w(u, v) is
a bidirectional communicational line between the node u and
the node v. Each node has only the local information i.e. each
node aware about its identification number and the weight of
the incident links. After construction of the MST, each node
will be aware of two additional information; first, the adjacent
edge leading to the parent node in the MST and secondly the
adjacent edges, those leading to the child nodes in the MST.



Nodes can communicate only via messages. The messages
may be lost due to link failure during transmission. However,
if the link is functioning, the messages can be sent from either
end and can be received by the other end within a finite, un-
determinable time, without error and in sequence.

Also, if a link failure occurs, then the failure event triggers
the recovery process for each end of the failed link and the
recovery process initiated by the same node.

B. Observation

In the algorithm of [1] the reconstruction process works in
two phases. In Phase-I, root node informs each node of the
fragment with the new fragment identity, and in Phase-II, each
node finds its own MOE and forward the MOE to the root.
Root then identifies the MOE of the fragment. Finally, the
fragment sends CONNECT message via the MOE.

After failure each fragment changes its fragment identity to
new one. Also, each message passes to the neighbor contains
the fragment identity along with the control information. This
is used because if overlapping of link failure occurs then
the message response could be avoided depending upon the
fragment identity such a way, that only the current failure will
be processed during the execution.

C. Our Contribution

Our contribution to the algorithm is that we can use the
historical data like previously known fragment identity for
one fragment. When we use the previously known fragment
identity than the fragment with the older identity enter its
Phase-II without executing Phase-I. For our algorithm, we use
the previously known fragment identity for the root fragment.
Also, the FAILURE message propagating from the failure link
to the root of the root fragment no longer requires to carry
newly generated fragment identity. That means the FAILURE
message size is also reduced. The difficulty with this approach
is, when a TEST<id> message is received it may be possible
that fragment identity of the node is not updated yet. It may be
part of the same fragment or other fragments still in Phase-
I (Propagating new fragment identity is not completed yet).
However, if a node receives a TEST message in Phase-II, then
its fragment identity is correct. So, to avoid the conflicting
response to a TEST<id> message, the response is delayed
until the node enters into Phase-II.

Also, it is assumed that no further failures occur during the
execution. So, it is possible to reduce message size for control
messages. For example, the ACCEPT and REJECT message
do not require to send the fragment identity back to the sender.

D. Description of the protocol

In the beginning, each node maintains a collection of
adjacent edge. This adjacent edge collection is sorted by the
cost of the link. During the life time, an adjacent link can have
one of the following status

1) Basic - the link is yet to processed
2) Parent - the link lead to the parent
3) Child - the link lead to child

Fig. 1. MST of a random network

4) Rejected - the link is leading to the node included in the
same fragment

5) Down - the link in not working
It is assumed that, the MST is already constructed using

some distributed protocol. A link failure, triggers the recovery
process in both end of the link. Let us take, failure occurs for
the link e = (u, v, w, c) where u and v is the node connecting
the link. w is the weight of the link and c is the status change
count for the link. If the link is not included in the MST, i.e.
it is either in Basic or in Rejected state then u and v simply
changes the link status to Down and do nothing.

Fig. 2. A non MST link failure

Otherwise, the nodes marks the link Down and respond in
the following manner -
• When previous status of the link is Parent - the link

marks itself as root of the newly generated fragment. It
then marks all Rejected nodes to Basic. This is necessary
because the link may lead to the other fragments due to
the topological change. The node generates new fragment
identity for the fragment, reset its own fragment identity
and enters into the Phase-I by sending the INIT<fid>
message to its children. Here fid is the new fragment
identity as described by the algorithm [1], i.e. it includes
the weight and count of failure along with the identity
of the node. If u is the parent of v in the example edge
e then after failure v marks itself the root and changes
its fragment identity to fid = w(u, v), v, c then initiate
Phase-I by sending this fid along with the INIT message.
After receiving the INIT<fid> message node changes its



fragment identity to fid and marks all Rejected link to
Basic. Then it forwards the message to its children. If
the node is leaf node then it returns a FINISH message
to its parent. Each intermediate node waits for receiving
FINISH message from all its children and then sends
the FINISH message to the parent. A FINISH message
received by v (i.e. the root) indicates that all node of
the fragment knows the current fragment identity. Then
v starts Phase-II by sending the FINDMOE message.

• When previous status of the link is Child - the link
forward the FAILURE message to upward. Note that the
node did not generate new fragment identity to forward
along with FAILURE message. When the root node
detects the failure, it initiates the Phase-II directly by
sending FINDMOE message to its children.

Fig. 3. MST link failure and response of u and v

• A node receiving FINDMOE message, immediately en-
ters to finding state. In finding state each node finds its
local MOE. To find the local MOE a node picks the
minimum weighted adjacent edge which is in Basic state
and send TEST<fid>.

Fig. 4. Phase-II initiated by root of the fragment with FINDMOE message

• A node received a TEST<fid> message. The following
two cases to consider -

– Node executing in Phase-I: Then the response is
delayed until the node itself enters into Phase-II by
receiving FINDMOE from its parent.

Fig. 5. TEST message and response

– Node executing in Phase-II: In this scenario a
TEST<fid> message is replied by either ACCEPT
if its fragment identity is different than of fid or by
REJECT if its fragment identity is same as fid.

• Upon receiving the REJECT message the node picks the
next best edge in Basic state and sends TEST<fid> to test
the edge. However, if it gets ACCEPT message, which
indicates it found its local MOE, then the node waits
for its children’s response. After finding the local MOE,
leaf nodes propagate the best weight to its parent via
REPORT<wt> message.

• When a REPORT<wt> message is received, the inter-
mediate nodes compare their local MOE with the wt
received from children and change the MOE accordingly.
After getting REPORT<wt> message from all of its
children it sends the REPORT<wt> to its parent with
the best weight known by the node. Thus the best weight
is propagated to the root node of the fragment. At this
point the root sends the CHANGE ROOT message to the
same path that leads to the MOE.

• A node with the MOE of the fragment receives
CHANGE ROOT and marks itself as a root of the frag-
ment. Then it sends the CONNECT message over the
MOE and merge with the fragment sharing same MOE.

Fig. 6. Root of the fragment is changed and CONNECT message send for
merge the fragment



E. Analysis

Compare with the algorithm [1], in our approach the root
fragment directly enters into Phase-II. So, the INIT<fid> and
FINISH messages (REIDEN<id> and REIDEN ACK<id> in
algorithm [1]) of phase one is not required for root fragment.
Let us take the root fragment has E′ number of edges after
failure. Then to executing Phase-I it required to send E′

number of INIT<fid> message over E′ links. Also, it required
to send E′ number of FINISH message over E′ links. That
means the reconstruction process of our algorithm require
E′+E′ = 2E′ fewer messages then the protocol described in
[1].

When compare our approach with the protocol of [1] in
terms of message size, some control message contains very
few bits with respect to the protocol of [1]. For example,
the FAILURE message in the root fragment only contains
the control information indicating the failure occurrence. No
fragment identity is sends along with it. As we consider no
further failure occur during execution of the protocol ACCEPT
and REJECT message also contains control message only; no
fragment identity returns with it.

1) Complexity: Let us consider the network contains N
nodes and E edges. The initial MST contains N nodes and
e edges before the failure. Also, consider the root fragment
contains N ′ number of nodes and E′ number of edges. If the
height of the root fragment be h′, then to propagate the failure
message to the root of the root fragment require O(h′) number
of message. Propagate the new fragment identity for the other
fragment, requires O(N − N ′) messages because this infor-
mation will be propagated through the tree links. Similarly, to
send Find MOE request and merging two fragments require
O(N) messages since these messages also be sent through the
tree links. However, finding MOE of the fragments require to
send messages through O(E) links of the network. So, the
message complexity for the algorithm on link failure is O(E).

F. Proof of Correctness

At first, we will proof several Lemmas, which are used
in the distributed algorithm, and then we will show that the
algorithm generates the minimum weighted spanning tree after
completion of the algorithm.

Lemma III-F.1. Before topological changes, each node of the
network has information about the tree links incident to it.

Proof: It is assumed that the MST is initially constructed
using some distributed protocol. In our simulation, we use
the algorithm [7] to construct MST. Each node maintains a
list of incident edges and their status as described in section
3.4 i.e. nodes are aware about the links leading to its parent
and links leading to its children. These parent and child links
denote the tree links which are included in MST. Hence, each
node is aware about the tree links, incident to it before any
topological changes.

Lemma III-F.2. Root of the fragments receives failure noti-
fication within a finite time.

Proof: A failed link broke down the MST into two
fragments and notifies the failure to either end of the link.
The node attached with the root fragment propagate the
FAILURE message toward the root element. The other node
mark itself root of the new fragment and generates the new
fragment identity. Each message is assumed to be reach at the
destination in finite time and in a sequence manner whenever
the link is working. Also, it is assumed that no further failure
occurs during the execution. Hence, the FAILURE message is
correctly received by the root of the both fragments in finite
time.

Lemma III-F.3. On each node, fragment identity is updated
before the start of Phase-II according to the latest link failure.

Proof: Root fragment uses the previously known fragment
identity of existing MST. So the root fragment does not require
to update the fragment identity. It then directly enters into
the Phase-II, all nodes belongs to the root fragment already
aware about the fragment identity. However, for the other
fragment, newly generated identity is propagated to the child
nodes by INIT<fid> message. Leaf node returns the FINISH
message to its parent after updating their fragment identity.
Only after receiving FINISH message from its entire child a
intermediate node sends FINISH message to its parent. As the
messages are assumed to be reach at destination sequential
manner in a finite time then FINISH message received by the
root of the fragment implies each node already updated its
fragment identity. Then the root node initiates Phase-II for
that fragment. Thus, when a node is in Phase-II, its fragment
identity is always updated with the latest link failure.

Lemma III-F.4. Each fragment starts its Phase-II execution
in finite time.

Proof: As their is no link failure occur during the execu-
tion of the protocol, all messages of Phase-I will be properly
responded by the nodes in a finite time and finally terminated
when FINISH message received by root of a fragments.
Root node then initiate the Phase-II by sending FINDMOE
message. Hence, each fragment starts its Phase-II in a finite
time.

Lemma III-F.5. Fragments find its MOE within a finite time.

Proof: After getting FINDMOE message each node sends
TEST message to the minimum weighted non tree link (Which
is not in Down status) to test whether the link is leading
to another fragment or not. Then the node waits for the
response from the other end. The TEST message is correctly
reached to the other end because the link is not marked as
down and message lost is not a valid property according to
the assumption. TEST message response is delayed until the
node start executing Phase-II. From the previous lemma, we
found that TEST message is responded within a finite time
because the responder node will enter Phase-II within a finite
time. Also, the response is known to be correct because in
Phase-II the fragment identity is already updated with the new
fragment identity. Now, if El be the local minimum outgoing



edge and Ec be the minimum outgoing edge forwarded by
all of its children. Then, an intermediate node forward the
MOE = min(El, Ec) to its parents. Thus, at the root node
MOE of the fragment is calculated by MOE = min(El, Ec)
within a finite time.

Theorem III-F.1. The algorithm reconstructs spanning tree
in finite time and the spanning tree is the minimum weight
spanning tree of the network.

Proof: When the minimum weighted outgoing edge MOE
is determined by root, the fragment changes its root to the new
node where the MOE is incident. Then it sends the connect
message through MOE. If the MOE found by one fragment
is also MOE of the other fragment then two fragments merge
and create a merged fragment. If there is no other fragment
remains then it is the desire spanning tree. As merging only
possible if both fragments agreed that the MOE is common,
it is obvious that algorithm does not produce any cyclic path.

Considering the case, where only one link failure occurs
we can easily derive the proposition that the MOE of one
fragment is also the MOE of other fragment(Since network
links are uniquely weighted). Hence, the fragments merge at
MOE and produce a spanning tree.

Now, there is no possibility of any other outgoing edge with
lesser weight then MOE, because in the process only minimum
weight edge is filtered and forwarded from the leaf node
to the root node(MOE = min(El, Ec) from last lemma).
Finally, root node determines MOE of the fragment. So, the
merging occurs at the minimum possible weighted edge of
two fragments. Hence, merged spanning tree has the minimum
collective weight in the system.

Thus, upon terminating the algorithm reconstruct the span-
ning tree which has the minimum weight i.e. MST of the
network.

IV. EXPERIMENT AND RESULT

To compare the output, we simulate few network graphs
using ’Network Simulator v2 (NS2 2.29)’ [15]. We constructed
the initial MST using the algorithm [7]. The pictures below
shows the results of one experiment.

Fig. 7. Initial Graph and Constructed MST

The example graph contains the vertex set V , edge set E
and corresponding weight set W as below -

Vertex:

V = {0, 1, 2, 3, 4, 5}

Fig. 8. Recovered MST after failure(in red)

Edges:

E = {e1 = (0, 5), e2 = (0, 2), e3 = (0, 1),
e4 = (1, 2), e5 = (1, 4), e6 = (1, 3),

e7 = (2, 4), e8 = (2, 3)}

Weight:

W = {w(e1) = 4, w(e2) = 8, w(e3) = 15,

w(e4) = 10, w(e5) = 3, w(e6) = 5,

w(e7) = 6, w(e8) = 7}

Message required to terminate the execution of the algo-
rithm is tabularized in Table 1. Scenario 1, e7 link fails
and initiates the recovery process. If we use the construction
algorithm again (i.e. algorithm [7]) after failure it requires 114
messages, where as the performance is improved if we use
the reconstruction algorithm (i.e. using the algorithm [1]). In
our modified algorithm, it takes fewer messages then existing
reconstruction algorithm of [1].

TABLE I
LINK FAILURE VS REQUIRE MESSAGE CHART

Message Require For

Broken
Link

MST Con-
struction

Algorithm
of [1]

Modified Al-
gorithm

Scenario 1: Single link failure
e7 114 59 55

Scenario 2: Single link failure
e6 114 54 46

Scenario 3: Link failure one after another
e7 114 59 55
e6 50 50

V. CONCLUSION

In this paper, we have presented a distributed algorithm to
reconstructing a Minimum Spanning Tree after deletion of
a link. The problem can also be solved using the protocol
[1]. Here we showed that for single link deletion scenario our
protocol can reconstruct the MST with 2E′ fewer messages
than protocol [1]; where E′ represents the number of links in
the root fragment. If we consider MST with large depth and the
link failure occur to very close to leaf node (i.e. the E′ is much
greater than E−E′) then our algorithm performs much better



way. However, when E′ is zero i.e. the link failure occurs at
root node, the algorithm completed without any improvement
of the total number of messages. We can refer to Scenario 3,
where for next link failure there is no improvement in total
number of messages.

VI. FURTHER WORKS

When a TEST<fid> message is delayed until the node
enters its finding state then we can use the same TEST<fid> to
determine whether the adjacent edge is Rejected or Accepted
and used it instead of sending another TEST<fid> message
over the same edge. However, this approach may lead to some
other difficulties due to the asynchronous nature, and we are
currently working on the same.

Whenever the failure occurs at the root or very close to the
root, improvement is close to zero. We are working on the
algorithm so that it can use historical data such a way, which
produces improvement for other scenarios too.

Also, currently we are working how we can modify the al-
gorithm so that it accepts topological changes during execution
of the algorithm.

REFERENCES

[1] C. Cheng, I.A. Cimett, and S. P.R. Kumar, ”A protocol to maintain a min-
imum spanning tree in a dynamic topology.” Computer Communications
Review 18, no. 4 (Aug. 1988): 330-338

[2] R. Gallager, P. Humblet and P. Spira, ”A distributed algorithm for
minimum-weight spanning trees.” ACM Transaction on Programming
Languages and Systems, 5(1):66-77, January 1983

[3] Chin F., Ting H. ”An almost linear time and O(n log n+e) messages
distributed algorithm for minimum-weight spanning trees.” Proceedings
of 26th IEEE Symp. Foundations of Computer Science, p.257-266, 1985

[4] Gafni E., ”Improvement in the time complexities of two message optimal
protocols.” Proceedings of the ACM Symp. on Principles of Distributed
Computing, 1985

[5] B. Awerbuch, ”Optimal Distributed Algorithm for Minimum Weight
Spanning Tree, Counting, Leader Election, and Related Problems,” Symp.
Theory of Comp., pp. 230-240, May 1987.

[6] J. Garay, S. Kutten and D. Peleg, ”A Sub-Linear Time Distributed
Algorithm for Minimum-Weight Spanning Trees.” 34th IEEE Symp. on
Foundations of Computer Science, pp. 659-668, November 1993.

[7] Gurdip Singh , Arthur J. Bernstein, ”A highly asynchronous minimum
spanning tree protocol.” Distributed Computing, v.8 n.3, p.151-161,
March 1995

[8] Elkin M., ”A faster distributed protocol for constructing minimum
spanning tree.” Proceedings of the ACM-SIAM Symp. on Discrete
Algorithms, p.352-361, 2004

[9] Michalis Faloutsos, Mart Molle, ”Optimal Distributed Algorithm for
Minimum Spanning Trees Revisited” Proceedings of the 14th Annual
ACM Symposium on Principles of Distributed Computing, pp. 231-237,
1995.

[10] B. Das and M.C. Loui, ”Reconstructing a minimum spanning tree after
deletion of any node.” Algorithmica, 31. pp. 530-547, 2001.

[11] E. Nardelli, G. Proietti, and P. Widmayer ”Nearly linear time minimum
spanning tree maintenance for transient node failures” Algoritmica, 40.
pp. 119-132, 2004

[12] Hichem Megharbi and Hamamache Kheddouci ”Distributed algorithms
for Constructing and Maintaining a Spanning Tree in a Mobile Ad hoc
Network” First International Workshop on Managing Context Information
in Mobile and Pervasive Environments, 2005.

[13] P. Flocchini, L. Pagli, G. Prencipe, and N. Santoro ”Distributed compu-
tation of all node replacements of a minimum spanning tree” Euro-Par,
volume 4641 of LNCS, pages 598-607. Springer, 2007

[14] Awerbuch, B., Cidon I., and Kuten, ”Optimal maintenance of a spanning
tree.” J. J. ACM 55, 4, Article 18 (September 2008), 45 pages.

[15] Network Simulator version 2(NS2)


