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Abstract—In this modern era of technologies of scale, vast
amounts of data are generated both by users and machines
every day. This data comes as streams that may contain outliers.
Detecting those outliers can be helpful in many ways, such as
machine failures due to overload. Similarly, trends in social media
posts are also outliers, and detecting them at different levels
has great benefits. The current paper proposes an algorithm
to approximate median and median absolute deviation from a
stream of numerical values. The algorithm takes a fixed number
of memory spaces and linear to the size of the memory. The
median and median absolute deviation are then used to detect
outliers and multi-level trends without being prone to noise in
the data. Experimental results with CPU usage benchmark data
and Twitter post data show the effectiveness of the proposed
algorithms.

I. INTRODUCTION

Detecting outliers [1, 2} 3] and trends [4, 5] have been
important tasks for data mining and computer science. It
became more relevant in the past decades [6} [7, I8, 9} [10] due
to the amount of crucial data generated in real-time both by
users and machines. For example, an estimate of around 7000
tweets was made every minute in the year 2020, out of which
around 700 million tweets were sent about elections around
the globe [L1]. Twitter runs over 150 thousand applications
and launches 130 million containers each day [12] to manage
such workload. Similarly, a company like Bloomberg, which
enables real-time market analysis to its clients, provides access
to 35 million instruments across all asset classes [[13]]. This
data is more than enough to realize the scale at which the
modern internet works. This also rules out the possibility
of manually detecting the trends and anomalies in an ever-
evolving stream of data.

Recent events like capital riots in the US and harmful effects
of hate speech [14] makes trend detection and that too at many
levels an inevitable task. Furthermore, detecting outliers in
machine-generated data early on holds great significance. It
is evident from the recent outages suffered by Google. It is
worthwhile to note that when the impact was visible to various
services due to issues with automated resource allocation, the
app status page did not update until 30 minutes [[15]]. This helps
realize the importance of developing fast algorithms capable
of detecting outliers in machine-generated data to avoid the
negative impact.

Approaches like clustering techniques [16] [17, [18] [19] may
work well with static data. However, with ever-evolving data
streams, such techniques will require infinite memory, which

is practically impossible. In addition to that, approaches which
use statistics like mean and standard deviation or their variants
to detect outliers are prone to noise [20] and suffer from
numerical issues [21]. Also, this requires the underlying data
to be normally distributed, which is often not the case [20].

The facts, as mentioned earlier, motivate to development
of algorithms that can quickly detect outliers and trends in
an ever-evolving stream of data without being prone to noise
by utilizing limited resources. In this paper, we present two
such algorithms, one to detect outliers in numerical data and
another to detect trends at multiple levels in text data streams.
The main contribution of the paper can be summarized as
follows:

o First, we propose a new median and median absolute
deviation estimator from a numerical data stream. These
estimations are then used in a new algorithm to detect
outliers from numerical data streams. We showed ex-
perimentally that the proposed algorithm could detect
outliers from the CPU usage data of Numenta Anomaly
Benchmark [22].

e Secondly, we propose an algorithm to detect trends in the
text data stream. Here we tokenized the text into different
sets of words, and their frequencies are treated as the
numerical data stream. We used the previously proposed
anomaly detection algorithm to identify trending posts.
Our algorithm can detect trends in the stream in different
levels of abstraction simultaneously.

« Finally, we demonstrate the capabilities of the algorithms
experimentally.

The rest of the paper is organized as follows. In Section
we concretely define the problems of outlier and multi-
level trend detection. Sections and we propose our
algorithms and analyze their performance and efficacy. Section
discusses the related works, and wherever possible, we
present a comparison with ours. Experiments and results are
reported in Section Finally, we concluded the findings and
limitations in Section

II. PROBLEM DEFINITION
The problems of outlier detection and multi-level trend
detection from the data stream are defined here in this section.
A. Outlier detection in numerical data stream

Let us consider that X denotes an ever-evolving stream of
numerical values, and X; denotes the t** data point in X. We



define the problem of outlier data detection as follows,

Definition 1 (Outlier). Any data point, X; is said to an outlier
if it follows a distribution significantly different from that of
the data seen in the past.

The problem of outlier detection is to identify all such out-
liers from the numerical data streams online. It is worthwhile
to mention that the same data point can be an outlier at one
point in time but may not be an outlier in the future [23]. In
other words, X; may or may not be an anomaly depending on
the value of ¢ even though it attains the same value. Note that,
from here onwards, we will be using the terms anomaly and
outlier interchangeably with no difference in their meaning.

B. Multi-level trend detection in textual data stream

Consider D as a stream containing text documents and
D, . be the set of documents till the ¢! time stamp. Further,
let W; be the set of [-length combination of words. For
example, {is,are} belongs to W5 and {is, are,am} belongs
to Ws3. We say that W, may contain trends at level /.

Definition 2 (Trend at [*" level). Any word combination in
Wi will said to be a trend if the frequency of occurrence of
that combination in D1 ; is a numerical outlier.

The problem of multi-level trend detection is to detect trends
from text data stream for different values of /. It should be
noted that the frequency of all word combinations in W is
taken into account to determine the outlier frequencies and
their associated word combinations. In simple terms, those
word combinations are marked as trends which have too high
frequencies compared to other word combinations in the same
level. This interpretation also ensures to mark trends which
suffer sudden change in frequencies compared to others.

III. ALGORITHM FOR OUTLIER DETECTION

In this section, we present algorithms for detecting outlier
in a numerical data stream. We first approximately estimate
the median and median absolute deviations (MAD) from the
stream and then detect the outlier using the same.

A. Mean and MAD Estimation

Algorithm [I] shows the approximate median estimator. It
selects an element from the stream with probability % and
keeps it in an ordered multiset S. S’ is the sampled items from
which the median and MAD are estimated on the query. We
made the set S as a multiset to keep the same numerical value
multiple times as the stream progresses. A point to note here
is that the primary objective of the algorithm is to work with
univariate numerical data. Hence, the ordered set S is ordered
based on the value of the data point. The algorithm returns
the median and MAD estimated from the sampled values. The
size of S is restricted with a threshold 6. If length(S) is equal
to 6 while inserting a new element, then we remove one of
the elements with m probability to make space for the
incoming data. This allows for adding newer values of the
stream to S by removing an old one. The time and space

Algorithm 1: Approximate Median and MAD

Input: X; — tth numerical value in the stream; S — an ordered
multiset of sampled data points from X ;—1; 6 — the
maximum size of S

Output: On query returns: M — the approximate median of

Xi...ts MAD — the approximate median absolute
deviation of the stream seen so far;

// Sampling of the stream

p < random(0, 1);

if p> 1 then

if length(S) > 6 then
| remove(S);

end

S.add(Xy);

end

// Query

8 M «+ get(S, 7lmg;h(s> );

9 MAD <« 0;

10 i< 0;

1 while i <length(S)—1 do

12 MAD += get(S,i) — M;

N s N =

13 i+=1;
14 end

MAD .
15 MAD « Tength(5)’

16 return M, MAD

complexity of the above algorithm depends upon the value of
0. The time complexity of the median query is constant for
ordered multiset S. On the other hand, once the median is
calculated, MAD can be calculated by a single pass of the
sample. Hence, the complexity is O(0).
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Fig. 1. Percentage error in the values of median (top) and MAD (bottom)
computed by Algorithm 1 for synthetically generated numerical data stream.

It is trivial to observe that with the increase in the size of .S,
the approximations of median and median absolute deviation
will get better. However, it is also important to answer the
question that, “How large 6 should be to get reasonable
estimates of the above two statistics of the stream?”. In [24],
0> % was used to compute an € = €1 + €5 approximate
of gb-qua?ltile of a dataset of size N. We may use this result
in our algorithm. However, since we are dealing with data
streams instead of a static data set, we may not be able to
leverage the opportunity to look at a single element more than
once, in which case sampling with replacement may not be
possible. Therefore, our algorithm simplifies the above task



and selects an element based on the tossing of an unbiased
coin. In order to analyze the error percentage of the estimated
mean and MAD with the fraction of the number of elements
in the stream as 6, we ran Algorithm [I] for different values of
the number of elements in the stream (m). The result is shown
in Figure[I] The images in the top row show the percentage of
error in the value of median, whereas the bottom row shows
the error in the MAD. For all three experiments, we used
6 = 1000. Different plots show results for different range of
values for X;, from the first column till third column these
values are in the range of [0, 100], [0,10°], and [0,35 x 108]
respectively. X-axis shows the logarithmic value of the total
number of data elements in the stream. The error percentage
is calculated based on the actual mean (or MAD) with the
approximated mean (or MAD) obtained from the proposed
Algorithm [T] It is observed from the result is that the error is
not more than 4 % for the majority of the experiments.

Algorithm 2: Detect Anomalies in Numerical Stream

Input: X; — tth numerical value in the stream; S — an ordered
multiset of sampled data points; ¢ & k — the threshold for
detecting anomalies and noise removal; § — the maximum
size of S;
Output: True — when X; is anomaly; False — when X; is
neither anomaly nor noise; None — when X is detected
as noise.
M, MAD <« Algorithml.Query();
if X; > M+ k X ¢ x MAD then
| return None;

end

if X¢ > M+ c¢x MADorX; <M — ¢ x MAD then
\ return True;

else
\ return False;

end
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B. Outlier Detection

The proposed algorithm, shown in Algorithm detects
whether an incoming element X; is an anomaly or not. In
its core, Algorithm [2] uses Algorithm [I] to estimate the mean
and MAD. Variables ¢ and k are user-defined parameters that
control the tolerance of the anomaly and noise, respectively. In
other words, if an incoming element is away from the median
by c factor of MAD but less than k x ¢ factor of MAD, we
call the data point an anomaly. It is worthy to note here that
since the median has a breaking point of 0.5 [20], or in simple
words, it is not corrupted by noise in the data easily as opposed
to the mean, which has a breaking point of 0 chances of noise
close to the mean is low. Hence, we consider a data point
noise if it is k£ x ¢ x M AD away from the median. Algorithm
2l can be executed in constant time if the mean and MDA
are known. Thus, the time and space complexity of Algorithm
] is the same as Algorithm [I] with some constant overhead
incurred due to anomaly and noise checks.

IV. ALGORITHM FOR TREND DETECTION

Algorithm [3| shows the proposed algorithm for trend de-
tection from stream of text documents such as Tweets. A

Algorithm 3: Detect Trends in a stream of Text

Input: D; — tt" numerical value in the stream; S — [, X Ny,
size hash table mapping the level to its associated ordered
multiset of frequencies of word combinations W from
D; . :—1; freqs — a hash table mapping levels to the
maximum frequency of a word combination to that level;
¢ — the threshold for detecting anomalies; h — a hash
function which maps a string to an integer; l,,, —, the
maximum level to be considered for trend detection; 6 — the
maximum size of the samples;

Output: results — set of found trends;

1 W « tokenize(Dy,[1,2,...,1n]);

// tokenize(.,.) function tokenized the first
input into word combinations of lengths
passed by the 2nd argument

2]
3 for W; € W do

4 for wordcomb in W, do

5 h < h(wordcomb) Update freqs|l][h] with the
maximum frequency.;

6 S[l] - Algorithm1.Sample(freqs[l][h], 0)

7 end

8 end

9 for [ € freqgs do

10 for hash in freqsll] do

11 if Algorithm2(S|l],c,k = 2,0) = True then

12 | results[l].add(hash);

13 end

14 end

15 end

document D; (t;;, document in the stream) is first tokenized
into combinations of words. We refer the size of the token
as level and the max level (/,,,) to consider is an user input
parameter to the algorithm. These word combinations are then
hashed for ease of use and the maximum frequency is captured
by the algorithm for detecting the trends. Furthermore, the
trends are detected by utilising the numerical outlier detection
algorithm discussed in Section [lII] from the frequency stream.
It should be noted that inverse mapping of h in Algorithm
is maintained in order to retrieve the original trends, although
this inverse mapping will not be utilized during the execution
of the algorithm itself.

a) Complexity:: The lines 3 to 8 will run for all possible
combinations of words of length from 1 till /,,,. If we consider
the average number of words in document D; is IN,, then the
complexity of these loops will be O((N,)""). On the other
hand, the running time complexity of the lines 9 to 15 is equal
to [, times the size of the range of the hash function, IV}, say.
Thus the time complexity of Algorithm is O((Ny)bm +1pp x
Ny,). The space complexity will be O(l,, x (max(0, Np)).

V. DISCUSSION AND RELATED WORK

This section discusses the studies conducted so far in the
area of outlier and trend detection and wherever possible we
have made a comparison with ours.

A. Outlier Detection

The most basic though simple approach is ‘three-sigma rule’
for detecting anomalies in a data set. It uses the distance from
the mean value as the metric to decide whether a given data
point is anomalous. Specifically, if a data point is more than



3 standard deviations (SD) away from the mean, it is marked
as an outlier. Despite the assumption that the underlying data
is normally distributed is impractical [20], this technique is
efficient. Specifically, it requires only one pass over the data
set and consumes O(1) extra memory. In a data stream, running
averages and SD can be computed to implement the above
technique. However, the mean has a breaking point of 0 com-
pared to the median, which has a breaking point of 0.5. That
is the mean can easily be corrupted with noise, but the median
can handle at most 50% of noisy data. Other approaches along
similar lines are Exponentially Weighted Moving Averages
(EWMA) [25], which exponentially reduces the weight of
data points as time passes, i.e., it gives more weight to the
recent values than the older ones. Probabilistic EWMA was
proposed by [26] to solve the limitation of EWMA'’s response
to abrupt changes in the data stream. The issues with mean
still persist when we use a simple moving average, EWMA or
PEWMA. Our algorithms utilize a reasonable approximation
of the median coupled with the median absolute deviation,
which solves the problem of corruption due to noise with
moving averages & SD.

Grubb’s Test [27, 28] was proposed to detect a single
anomaly in a given data set. It defines a null hypothesis test by
assuming the underlying data to be normally distributed. It also
uses the mean and variance of the data, making it prone to the
limitations of these statistics, i.e., easily getting corrupted due
to noise. In addition to that, it is capable of only detecting
the largest anomaly in a given data set. Tests like Extreme
Studentised Deviate (ESD) [29], Seasonal-ESD [20], Seasonal-
Hybrid-ESD [20] build on top of Grubb’s test by running the
hypothesis test a given a number of times. Hence, they are
capable of detecting only a given amount of anomalies in a
stream and that too by requiring more than one pass of data.
Our algorithms are capable of detecting multiple anomalies in
a given data stream in a single pass, and they do not assume
anything about the underlying data distribution.

Balanced Iterative Reducing and Clustering using Hierar-
chies (BIRCH) [21] detects anomalies in a data set/data stream
using a height-balanced B-Tree. Each node of the tree stores a
cluster feature which is a triplet of the number of data points in
that cluster and their linear and squared sums. It periodically
scans the tree and flags the low-density leaves as outliers.
LOF [30] is one of the most popular algorithms for anomaly
detection. It computes scores based on k-distance, reachability
distance, and local reachability density to mark a data point as
anomaly. This approach is well suited for static data sets where
all data points are already available. However, such approaches
may not work in a data stream due to the high computational
resource requirement. iLOF [31]] is an improvement over LOF
but still suffers from high memory requirements for retaining
the previous data points.

B. Trend Detection

First Story Detection [32] is a problem closely related to
trend detection, where algorithms attempt to find the origin
of an event. Our algorithms detect trends when they achieve
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Fig. 2. Results from Algorithm 2 on CPU usage data [22]]. The red dots
denote the anomalies flagged by the algorithm.

a frequency in a particular range. Anything above the upper
bound of that is considered as noise. Clustering techniques
have been used [16] to group the incoming documents of a
stream in groups with respect to their similarity by represent-
ing them in a vector space. The incoming documents, which
differ significantly from the previous documents, are reported
as the origins of the event highlighted by that document.
This approach may not be efficient when applied to a never-
ending stream due to high memory requirements for storing
the previous records. Moreover, verifying if the new document
is an anomaly or not, any existing techniques will require
O(V) time where N is the total number of documents or O(K)
processors, where K is the number of groups. Our algorithm
does not require storing the entire set of documents. However,
it does store the maximum frequency of word combinations
generated from the incoming document at each level.
Approaches like [33, 34] attempt to solve the memory
problem by either using limited data like hashtags from tweets
or titles of blog posts which reduces the quality of the results
obtained. In [32], the memory problem has been solved by
developing a hashing technique to store the frequencies of
the hash of only the most popular words. However, the
measures like z-scores used in [32] assume that the data is
normally distributed, which is rarely the case [20]. We use
approximate median and median absolute deviation to detect
outlier frequencies and that too at multiple levels, which is not
the case in any previous works as per our best knowledge. This
makes our algorithm less prone to noise in the data stream.

VI. EXPERIMENTS AND RESULTS

In this section, we present and analyze the results of our
experiments. Algorithms are implemented in Python 3.x on
Google colab, a freely available infrastructure for research. We
show the capabilities of our algorithms through experimental
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Fig. 3. Word cloud of trends captured by proposed trend detection Algorithm
P] from tweets of May, 2019.

results and show how they can be used as an additional
tool in a system independently or along with other anomaly
detection techniques. We perform two different experiments to
understand the capabilities of the proposed algorithm, first with
the anomaly benchmark data of CPU usage [22] for identifying
numerical anomalies and second with the Twitter data [[35] to
extract trends out of Tweets.

We used CPU usage data from Numenta Anomaly Bench-
mark [22] for evaluating Algorithm [2] Different experiments
are performed for different values of ¢ and 6. Figure [2] shows
the results. The x-axis shows the arrival index, and the % of
CPU usage is shown in the y-axis. The top plot shows the
results for ¢ = 1.3 and # = 200 while bottom plot shows
results for ¢ = 2 and # = 1000. It is observed from the plots
that abnormally high CPU usages are marked as outliers for
both configurations. Note that, in the top plot, the 40% to 50%
band of CPU usage is initially marked as an anomaly, but later
the algorithm is self-corrected and considered as normal CPU
usage. Further to that, abnormally low CPU usages in the latter
part are also marked as anomalies that may reflect a system
failure resulting in low CPU usages compared to the regular
pattern. With the increase in the value of ¢ the same is not
visible in the bottom side plot.

Algorithm 3| is evaluated on tweets from May 2019, which
were available on the internet archive [35]. In the exper-
iment, we used around 12000 tweets, and the value of 6
and ¢ was kept as 100 and 1.5 respectively. k was taken
as 3 in this case. We observed that our algorithm was able
to capture trends with very small frequencies, for example,
billboard, having a very low frequency of 6 was captured at
level 1, and 1VoteBBM AsTopSocial EXOVotingTeam
favoritel with a frequency of 3 was also captured at level 3.
The result indicates the happening of Billboard Music Awards.
One may note that the space between words was removed
as a pre-processing while creating the hash values. Further
to that, non-trending but high-frequency word combinations
were automatically removed. For example, RT was one of
the most used words but was not captured. This indicates that
our algorithms are not easily corrupted by spam and noise in
the data. The word cloud generated from the results of the
proposed algorithm is shown in Figure [3| for reference.

VII. CONCLUSION

This paper proposed efficient algorithms for outlier and
trend detection from streams by utilizing a new approxi-
mate median and median absolute deviation. The proposed
algorithms do not easily break by noise in the data stream,
unlike the mean and standard deviation based outlier and
trend detection algorithms. We showed experimentally that
the proposed algorithm works as expected and can detect
anomalies and trends from real-world data streams.

One limitation of Algorithm [I|is that it depends on specify-
ing 0. This impacts the algorithm’s performance significantly
as the approximation of median and median absolute devia-
tions will depend upon it. However, experimentally it is found
to give good results when we kept § = 1000. The error was
within a range of 4%. The parameters ¢ and k of Algorithm
are user-defined parameters that specify the tolerance level for
anomalies and noisy data. Our experiment shows promising
results for the value of ¢ between 1 to 3 and k£ = 2. However,
it may depend on the problem at hand, and the user can select
based on some trials.

The execution time of Algorithm [3|depends on the choice of
the maximum level and the average length of the documents
received in the stream. To obtain a reasonable execution time,
one should keep the value of the maximum level low when
the number of words in the document is significant.

Through the experiments on benchmark data, we showed the
applicability of the proposed algorithm. As a future direction,
a comparison with existing outlier detection algorithms may
be explored. The presented algorithms may also work simulta-
neously to complement the existing outlier detection algorithm
by detecting the early sign of anomalies in the stream.
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