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Abstract—Extractive summarization is one of the vital tasks in
text analysis and natural language processing. Although Hindi
is one of the world’s highly speaking languages and produces
thousands of online documents daily, most existing text summa-
rization works focus on the English language. A Neural network-
based summarizer is popular for abstractive summarization but
has not been explored for extractive one except in a few recent
studies. The present work uses a neural extractive summarizing
model to develop a Hindi language extractive summarizer. The
main contribution of the paper is two-fold. First, we generated
a new Hindi-based text summarization data set from a popular
Hindi news channel AajTak. The code to generate the data set
is available at https://tinyurl.com/sonaa-hindi-text. Then we use
this data set to train a Neural Extractive Summarization model.
The model also learns the word embeddings while learning itself.
The ROUGE-2-F1 and ROUGE-1-F1 results on test data show
promising output with a score of 20.02 and 39.81, respectively.

I. INTRODUCTION

Extractive document summarization is one of the important
research problems in text analysis and natural language
understanding. Extractive summarization is to extract out
sentences from a document. It is similar to the highlight
important lines in a document. It has been in research for a
long time [1], [2], [3], [4], [5], [6] and most of the approaches
can be categorized under the head of Semantic Analysis-based
Approaches [4], [7], [6], Graph-based Approaches [5], [3],
[8], [9], [10], Meta-heuristic based approach [11], [12], [13],
[14]. Abstractive document summarization [15], on the other
hand, generates a summary by paraphrasing the important
information of the document. Although neural network or
deep learning-based algorithms have been extensively used for
abstractive summarization, recent research shows its application
in successfully extracting of summary out of single document
[6], [16], [17].

English documents are substantially explored in the literature
of text summarization. There are a few works on other European
languages [18] as well. No study of neural network-based text
extraction was conducted for Indian languages such as Hindi.
However, online documents generated per day for Hindi is on a
huge scale, considering hundreds of Hindi newspapers and news
channels produce thousands of online documents. It provides a
multitude of text-based applications and research opportunities.
A comprehensive comparative analysis of different extractive
text summarization techniques on Hindi alongside English text
was presented in [19]. The study concluded that the neural
network-based methods perform poorly on Hindi documents.

However, the data set used therein was minimal, about 500
documents, which for a deep learning model is not convincing.

In this work, we generated a Hindi document dataset with
the full article and editorial summarization by scrapping one of
a popular Hindi news channel AajTak. We then used this data
set to train a Neural Network based text extractor model. Our
model is motivated by the document summarization solution
proposed in [17] wherein modifications are made in order to
use the model for the Hindi language. In addition to that we
initialized the word embeddings using a Gaussian distribution
with the Xavier scheme and allowed our model to optimize them
to make the model a true end-to-end solution. We compared
our results in terms of ROUGE-2-F1 and ROUGE-1-F1 [20]
scores with the baseline algorithms and got a score of 20.01
and 39.81, respectively. Our methodology achieved more than
16% improvement from the best baseline algorithm LEAD-3
algorithm. The contribution can be summarized as follows:

• We generated a Hindi Text Summarization data set of
100,000 documents from one popular Hindi news channel.
The code to generate a similar data set will be published
for future research.

• A neural extractive summarization methodology has been
developed to obtained extractive summaries from Hindi
documents using the aforementioned data set. To our best
knowledge, this is one of the first attempts to develop a
Hindi Neural Summarizer.

The rest of the paper is organized as follows. Motivation and
literature review on Hindi text summarization is presented in
Section II, followed by the description of the proposed Neural
Summarization methodology for Hindi extractive summary in
Section III. Section IV reports the results of the experiments,
and finally Section V concludes the article.

II. MOTIVATION AND RELATED WORK

Hindi is one of India’s highly speaking languages, and the
third-highest [21] speaking language in the world. It provides
ample opportunity for text and speech-based research. However,
the literature on Hindi text summarization is much less as
compared to English. Recent research attempt for Hindi text
summarization are majorly Meta-heuristic based [22], [23],
[24] except a few. For example, [25] proposed a graph-based
algorithm for Hindi text summarization, whereas sentence
scoring based on the occurrence of radix terms and thematic
words has been proposed in [26]. There has not been any



independent attempt to use the Neural Network based model
for Hindi text analysis. It motivates us to work on this research
study.

In the same line of thought, a comprehensive review work
was conducted recently in [19], where the authors systemati-
cally reviewed the performance of several different English text
Summarization algorithms for the Hindi data set. The attempt to
use Neural Network based algorithm in this research work was
limited. The paper mentions that 500 documents were used in
the research, but it is not clear from the paper whether these 500
were tested on a model trained with English or the training
was conducted over Hindi files. The number of documents
used for training was also not specified. On the other hand,
the work concludes that “the neural networks-based techniques
have not exhibited a good performance in comparison to the
graph-based and meta-heuristic-based techniques for Hindi”. It
also motivates us to see how neural network-based algorithm
performs to extract from Hindi documents if the model is
trained with Hindi documents.
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Fig. 1: Block Diagram of NeuSumHD

III. NEUSUMHD: NEURAL EXTRACTIVE SUMMARIZATION
OF HINDI DOCUMENT

This Section provides detailed descriptions of the method-
ology used for the proposed NeuSumHD for generating
text summary. Figure 1 shows a block diagram of the
overall methodology used in this research work. We first
generated a Hindi Summarization Corpus of 100,000 doc-
uments from AajTak web articles. The data is available at
https://doi.org/10.6084/m9.figshare.13712881.v1 for download.
The data set is then divided into training and testing. The
neural summarization model is divided into two parts viz. (i)
document encoding and (ii) sentence selection as described in
the following Sections.

A. Hindi Extractive Summarization Corpus Generation

We generated a Hindi corpus of 100,000 news articles as
there is no useful data set is available for Hindi extractive
summarization. The article’s body and highlights are scraped
from the AajTak website. AajTak is one of the popular Hindi
news channels having a very active web portal of Hindi news

Fig. 2: A sample article used in AajTak dataset which has a
description in grey text which is followed by bold bullet points,
Highlights.

articles. For reference to the reader, Figure 2 shows examples
of news articles from AajTak. The AajTak article comes with
curated editorial summarization. The AajTak articles contain
bullet highlights as well as a paragraph of editorial summary.
We have taken three sentences as a reference summary. The
challenges were to find the 3-sentences as not all article contains
three bullet highlights. In such cases, we took the first n-
sentences from the summary paragraph to compensate for
the remaining. One of the other challenges with this curated
summarization is that the editors’ summary highlights are not
exact sentences from the article but a novel abstract summary.
We use the Algorithm 1 to generate the extractive reference
summaries for the training and analysis purpose. The process
is described next.

1) Data Prepocessing and Extractive Reference Summaries:
The raw data scraped is split into words, and then these words
are processed into tokens. This process of tokenization involves
classifying entities into punctuation and actual words. There
are several challenges as different editors may have different
ways of representing the same things; for example, there are
several tokens just for the quotation that are used differently by
various editors. The data scrapped is in UTF-8 encoding, due to
Hindi characters and different punctuation and end of sentence
tokens are in Unicode. Documents are accordingly tokenized.
As already mentioned, the editors’ summary highlights are not
exact sentences from the article but a novel abstract summary.
We label the target summary as a combination of a subset of
sentences appearing in the document, which maximizes the
reference abstract summary. The extent of overlap is judged
by the ROUGE-2-F1 metrics.

Unlike [17], where a paragraph of the original article
is considered as a sentence, we split the data further into
“sentences”. We did this to optimize the output as it is expected
to have human-readable sentences. It would then have one
disadvantage that the selected sentence can be from anywhere in
a particular paragraph, and it might not make sense individually
without the context of the paragraph. Nevertheless, this is
a common disadvantage generally faced in extractive text
summarization techniques. We break paragraphs into sentences
at the occurrence of several end tokens and keep quotations as



it is for maximum context coverage. Since document lengths
have drastically increased, there is an explosion in the number
of combinations for any given length, and the greedy approach
used in [17] may take much time just to label the data. We
did not maximize the ROUGE-2-F1 score for all possible
combinations to handle this issue; rather, we fixed the number
of sentences to a threshold θ for our summary and proposed
a greedy hill-climbing algorithm for labeling as in Algorithm
1. The algorithm starts with an empty set as a summary. It
selects a sentence that maximizes the ROUGE-2-F1 with the
editorial summary. This partial summary is then incremented
with appending sentences that maximize the ROUGE-2-F1 until
we get the θ sentences as a labeled extractive summary.

Algorithm 1 Extractive Summary Labeling
Input: doc, S {doc: collection of sentences, S: editorial
summary}
Output: Sl {Sl: labeled summary}
Initialize: Sl = ∅
while |Sl| < θ do
s = argmaxs ROUGE-2-F1(Sl ∪ {s}, S) ∀s ∈ doc
Sl = Sl ∪ {s}

end while

Final data set properties are listed in the Table I. The statistics
are shown in Figure 3 for reference.

TABLE I: Properties of Generated Hindi Document Corpus

Properties Value

No. of Documents 100,000
Mean Document Length 15.65 sentences
Mean Sentence Length 19.64 words
Mean ROUGE-2-F1 of labeled sum-
mary

35.73

B. Model

Extractive summarization algorithms are mainly reduced
into two subroutines, which can be understood to be: sentence
scoring and sentence selection. Sentence scoring intends to
represent the importance of each sentence appearing in the
document, while sentence selection corresponds to the method
employed to sequentially pick those sentences such that the
generated summary has the maximum coverage while being
minimally redundant.

Our scoring and selection model is divided into two sections:
document encoding and sentence selection. The evaluation
metrics used in the model are the ROUGE-2-F1 metric. The
ROUGE-2-F1 score gives the extent of overlap between pre-
dicted and reference summary. The model is briefly described
in the following Section.

1) Document Encoding: A document constitutes several
sentences, and each sentence is formed out of words. Thus
this model employs a hierarchical document encoder, as shown
in Figure 4, to represent the sentences in the input document.
This encoder is intrinsically a combination of a sentence-level
encoder and a document-level encoder.

(a) (b)

(c) (d)

Fig. 3: (a) Distribution curve of document lengths (in sentences).
(b) Distribution curve of sentence lengths (in words). (c) The
ROUGE-2-F1 score distribution of the labeled target summary.
(d) Distribution curve of the positions of sentences selected in
the target summary.

The sentence-level encoder employs a bidirectional GRU
(BiGRU) [27] which reads the word embeddings of a sentence
in both directions (i.e., left → right, and right → left) and then
its sentence-level representation is constructed by concatenating
the last hidden layer from both the directions. Here the GRU
recurrent unit is defined as:

zi = σ(Wzxt + Uzht−1 + bz) (1)
rt = σ(Wrxr + Urht−1 + br) (2)

ĥt = φh(Whxt + Uh(rt � ht−1) + bh) (3)

ht = (1− zt)� ht−1 + zt � ĥt (4)

where Wz,Wr, Uz, Ur are the parameter matrices and bz, br
are the biases; xt is the input word embeddings corresponds to
the sentences in the document. ht represents the hidden states
and the initial states of the BiGRU is set to zero vector in the
experiments.

The document-level encoder again employs a BiGRU,
which reads the sentence-level representation of each sentence
sequentially in both the direction and then forms document-
level representation by concatenating both the forward hidden
layer and backward hidden layer after input of every sentence.
These document-level representations are considered actual
sentence representations and then fed to the scorer and selector
network.

2) Sentence Scoring and Selection: This Section of the
model has the responsibility to remember the partial output
summary and then scoring the remaining sentences according
to their importance and redundancy with the existing summary.
The model employs another GRU, shown in Figure 5, for
this task that remembers the selected sentences in summary,



Fig. 4: Document Encoder

Fig. 5: Sentence Scoring and Selection

and then uses a two-layer Multi-Layer Perceptron (MLP),
which takes the current hidden layer of GRU as one input
and a sentence representation as another and gives the score of
that sentence as output. The sentence representation with the
maximum score is selected to be the part of the summary, and
its sentence representation is then fed back to the GRU as the
next input. This process continues until we have a summary
of the desired number of sentences.

3) Evaluation metrics and Optimizer: The model optimizes
Kullback-Leibler (KL) divergence of the predicted score
distribution P and the labeled training data Q at every time
step t. The sentence scores generated by the previous Section
are normalized into a probability distribution P with softmax
function, while labeled training data Q is the normalized
ROUGE-2-F1 gain achieved by each sentence when coupled
with the partial output summary. Thus we train our model to
minimize the loss function:

J = DKL(P ‖ Q) = −
∑
s

Pt(s) log(
Qt(s)

Pt(s)
) (5)

Fig. 6: Training loss curve

IV. EXPERIMENTS AND RESULTS

The experiment has been conducted with the prepared AajTak
dataset on Google Co-lab using PyTorch. All the experiments
were run on Tesla P100 with CUDA version 10.1. Our AajTak
dataset has 188816 unique words. We then stem [28] these
words and constructed our vocabulary. We slash our vocabulary
at a size of 100,000 words since we get 99.64% coverage over
the dataset. Besides, the words ignored have a frequency of 2
or less and insignificant for training the model. We converted
the ignored words into <unk> token. The dimensions of the
parameters used in the program are shown in Table II. We
kept the batch size 64 documents and ran 100 epochs for our
experiment.

TABLE II: Parameters of the Experiments

Parameters Value
Word embeddings size 50

Sentence-level encoder size 256
Dropout at sentence-level 0.3

Document-level encoder size 256
Dropout at document-level 0.2

Sentence extractor size 256

Initialization of parameters, the configuration of optimizing
algorithm, gradient clipping, and all other model configurations
are also kept to be the PyTorch’s default values. We initialized
the word embeddings using a Gaussian distribution with the
Xavier scheme and allowed our model to optimize them. A
GPU compatible code is used with several batch processing
techniques to speed up the training process. The loss curve of
the training is reported in Figure 6.

The data set is divided into 90%, 5%, and 5% chunks for
training, validation, and testing. Length of the summary is kept
to 3 in our experiments and we compare it with the LEAD-3
and other baseline methods.

A. Baseline Algorithms

We compare our results with the following baseline algo-
rithms.



• Random: In this algorithm, uniformly randomly selected
sentences are considered as an extractive summary. We
selected 3 random sentences from the article as we
considered summary length to be 3 for the proposed
method in our experiment.

• TextRank: TextRank [3] is a graph-based text summa-
rization algorithm. This is an unsupervised algorithm for
extracting text summaries.

• LEAD2: In this method, the first two sentences of the
document is considered a summary.

• LEAD3: Similar to LEAD2, in this method, 3 sentences are
taken as summary. We particularly included this because
in our experiment we generated 3 sentence summaries.

For reference, we also mentioned the scores with the
Oracle data, which is the score of overlap with the reference
Summary with the editorial summary. One can consider this
as a theoretical maximum possible to achieve in our data set.

TABLE III: Comparative results of the proposed methods with
other baseline methods

Models ROUGE-2-F1 ROUGE-1-F1
Oracle 35.76 53.22

Random 9.67 31.19
TextRank 12.26 31.38
LEAD2 15.70 36.76
LEAD3 17.16 38.51

NeuSumHD 20.02 39.81

B. Results

The comparative results of the experiment are shown in
Table III. The proposed NeuSumHD achieved a score of 20.02
ROUGE-2-F1 and 39.81 ROUGH-1-F1 scores on the Hindi
AajTak dataset. The result is clearly better than that of the
strongest baseline algorithm we experimented with. In terms of
absolute value, the score is 2.86 and 1.30 greater than LEAD-3
in terms of ROUGE-2-F1 and ROUGE-1-F1, respectively. That
is, this improves about 16.67% and 3.37% over LEAD-3. A
graphical representation of the comparative results are shown
in Figure 7.

Besides, we analyzed the position of the output sentences.
Figure 8 shows the distribution of the sentence position in the
document. The x-axis shows the index of the sentence in the
document, and the y-axis shows the fraction of the test data
appear in the corresponding positions. As expected, the lower
indexed sentences are in a higher number in the results.

The percentage overlapped with the end result and the
expected result is shown in Table IV. For over 32% of the docu-
ments, the predicted results match exactly the expected/labeled
summary, and for 51.5% of cases, the overlap is more than or
equal to 50%.

V. CONCLUSION

The paper presented a neural network-based text sum-
marization for Hindi documents. We call it NeuSumHD.
NeuSumHD is found to outperform TextRank and LEAD-3
baseline algorithms. The paper also provides a mechanism to
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Fig. 7: Distribution curve of ROUGE-2-F1 scores achieved by
various models

Fig. 8: Distribution curve of positions of selected sentences by
NeuSumHD

generate Hindi Datasets from Hindi news channel AajTak. The
paper generated a dataset of size 100,000 documents based on
the proposed methodology.

Although our methodology is seen to outperform the baseline
algorithm and Graph-based TextRank algorithm for AajTak
dataset, different other datasets can be explored as a future work.
In addition, it would be interesting to see how the methodology
can be modified to perform multidocument summarization of
Hindi texts.

TABLE IV: Percentage of overlap between expected and
predicted extractive summary.

Overlap Fraction of data
0% 38.22%
33% 9.15%
50% 12.41%
66% 6.40%

100% 32.69%
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